Cargando…
Synthesis of C3,C6-Diaryl 7-Azaindoles via One-Pot Suzuki–Miyaura Cross-Coupling Reaction and Evaluation of Their HIV-1 Integrase Inhibitory Activity
[Image: see text] There is a continuing demand of new inhibitors of HIV-1 Integrase (HIV-1 IN) due to mutations of HIV-1. This study aims to develop the synthesis of 3,6-diaryl 7-azaindoles and introspect the role of aryl groups on the strand transfer (ST) inhibition of HIV-1 IN. An efficient and ch...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9996623/ https://www.ncbi.nlm.nih.gov/pubmed/36910947 http://dx.doi.org/10.1021/acsomega.2c07372 |
Sumario: | [Image: see text] There is a continuing demand of new inhibitors of HIV-1 Integrase (HIV-1 IN) due to mutations of HIV-1. This study aims to develop the synthesis of 3,6-diaryl 7-azaindoles and introspect the role of aryl groups on the strand transfer (ST) inhibition of HIV-1 IN. An efficient and chemo-selective one-pot method is established for the synthesis of the unexplored diverse C3 → C6 diaryl 7-azaindoles starting from 6-chloro-3-iodo-N-protected 7-azaindoles. Here we report Pd(2)dba(3)/SPhos catalyzed synthesis of eight selective C3 monoaryl 7-azaindoles (10a–h) and eight C3,C6-diaryl 7-azaindoles (11a–f, 12a,b) with yields in the ranges of 67–93% and 43–88% respectively. The synthesized derivatives inhibit the strand transfer (ST) activity of HIV-1 IN enzyme at 10 μM dose with 11d and 11f exhibiting %ST inhibitions of 72% and 71%, respectively. SAR studies indicate the para-substitution on the C3 aryl ring and C6 aryl is essential for enhanced %ST inhibition. 11b,c, 11e–f, and 12b showed lower cytotoxicity (IC(50) > 200 μM) against TZM-bl cells. Molecular docking of the diaryl 7-azaindoles and Raltegravir (RAL), to the PFV-integrase revealed favorable binding interactions. |
---|