Cargando…
Predicting Synthesizability using Machine Learning on Databases of Existing Inorganic Materials
[Image: see text] Defining the metric for synthesizability and predicting new compounds that can be experimentally realized in the realm of data-driven research is a pressing problem in contemporary materials science. The increasing computational power and advancements in machine learning (ML) algor...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9996807/ https://www.ncbi.nlm.nih.gov/pubmed/36910925 http://dx.doi.org/10.1021/acsomega.2c04856 |