Cargando…
Demonstration of p-type stack-channel ternary logic device using scalable DNTT patterning process
A p-type ternary logic device with a stack-channel structure is demonstrated using an organic p-type semiconductor, dinaphtho[2,3-b:2',3'-f]thieno[3,2-b]thiophene (DNTT). A photolithography-based patterning process is developed to fabricate scaled electronic devices with complex organic se...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Nature Singapore
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9998751/ https://www.ncbi.nlm.nih.gov/pubmed/36894801 http://dx.doi.org/10.1186/s40580-023-00362-w |
Sumario: | A p-type ternary logic device with a stack-channel structure is demonstrated using an organic p-type semiconductor, dinaphtho[2,3-b:2',3'-f]thieno[3,2-b]thiophene (DNTT). A photolithography-based patterning process is developed to fabricate scaled electronic devices with complex organic semiconductor channel structures. Two layers of thin DNTT with a separation layer are fabricated via the low-temperature deposition process, and for the first time, p-type ternary logic switching characteristics exhibiting zero differential conductance in the intermediate current state are demonstrated. The stability of the DNTT stack-channel ternary logic switch device is confirmed by implementing a resistive-load ternary logic inverter circuit. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s40580-023-00362-w. |
---|