Cargando…

Enantioselective Total Synthesis of (−)-Himalensine A via a Palladium and 4-Hydroxyproline Co-catalyzed Desymmetrization of Vinyl-bromide-tethered Cyclohexanones

[Image: see text] Herein, we describe the convergent enantioselective total synthesis of himalensine A in 18 steps, enabled by a highly enantio- and diastereoselective construction of the morphan core via a palladium/hydroxy proline co-catalyzed desymmetrization of vinyl-bromide-tethered cyclohexano...

Descripción completa

Detalles Bibliográficos
Autores principales: Kučera, Roman, Ellis, Sam R., Yamazaki, Ken, Hayward Cooke, Jack, Chekshin, Nikita, Christensen, Kirsten E., Hamlin, Trevor A., Dixon, Darren J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2023
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9999414/
https://www.ncbi.nlm.nih.gov/pubmed/36820616
http://dx.doi.org/10.1021/jacs.2c13710
_version_ 1784903655977123840
author Kučera, Roman
Ellis, Sam R.
Yamazaki, Ken
Hayward Cooke, Jack
Chekshin, Nikita
Christensen, Kirsten E.
Hamlin, Trevor A.
Dixon, Darren J.
author_facet Kučera, Roman
Ellis, Sam R.
Yamazaki, Ken
Hayward Cooke, Jack
Chekshin, Nikita
Christensen, Kirsten E.
Hamlin, Trevor A.
Dixon, Darren J.
author_sort Kučera, Roman
collection PubMed
description [Image: see text] Herein, we describe the convergent enantioselective total synthesis of himalensine A in 18 steps, enabled by a highly enantio- and diastereoselective construction of the morphan core via a palladium/hydroxy proline co-catalyzed desymmetrization of vinyl-bromide-tethered cyclohexanones. The reaction pathway was illuminated by density functional theory calculations, which support an intramolecular Heck reaction of an in situ-generated enamine intermediate, where exquisite enantioselectivity arises from intramolecular carboxylate coordination to the vinyl palladium species in the rate- and enantio-determining carbopalladation steps. The reaction tolerates diverse N-derivatives, all-carbon quaternary centers, and trisubstituted olefins, providing access to molecular scaffolds found in a range of complex natural products. Following large-scale preparation of a key substrate and installation of a β-substituted enone moiety, the rapid construction of himalensine A was achieved using a highly convergent strategy based on an amide coupling/Michael addition/allylation/ring-closing metathesis sequence which allowed the introduction of three of the five rings in only three synthetic steps (after telescoping). Moreover, our strategy provides a new enantioselective access to a known tetracyclic late-stage intermediate that has been used previously in the synthesis of many Daphniphyllum alkaloids.
format Online
Article
Text
id pubmed-9999414
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-99994142023-03-11 Enantioselective Total Synthesis of (−)-Himalensine A via a Palladium and 4-Hydroxyproline Co-catalyzed Desymmetrization of Vinyl-bromide-tethered Cyclohexanones Kučera, Roman Ellis, Sam R. Yamazaki, Ken Hayward Cooke, Jack Chekshin, Nikita Christensen, Kirsten E. Hamlin, Trevor A. Dixon, Darren J. J Am Chem Soc [Image: see text] Herein, we describe the convergent enantioselective total synthesis of himalensine A in 18 steps, enabled by a highly enantio- and diastereoselective construction of the morphan core via a palladium/hydroxy proline co-catalyzed desymmetrization of vinyl-bromide-tethered cyclohexanones. The reaction pathway was illuminated by density functional theory calculations, which support an intramolecular Heck reaction of an in situ-generated enamine intermediate, where exquisite enantioselectivity arises from intramolecular carboxylate coordination to the vinyl palladium species in the rate- and enantio-determining carbopalladation steps. The reaction tolerates diverse N-derivatives, all-carbon quaternary centers, and trisubstituted olefins, providing access to molecular scaffolds found in a range of complex natural products. Following large-scale preparation of a key substrate and installation of a β-substituted enone moiety, the rapid construction of himalensine A was achieved using a highly convergent strategy based on an amide coupling/Michael addition/allylation/ring-closing metathesis sequence which allowed the introduction of three of the five rings in only three synthetic steps (after telescoping). Moreover, our strategy provides a new enantioselective access to a known tetracyclic late-stage intermediate that has been used previously in the synthesis of many Daphniphyllum alkaloids. American Chemical Society 2023-02-23 /pmc/articles/PMC9999414/ /pubmed/36820616 http://dx.doi.org/10.1021/jacs.2c13710 Text en © 2023 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Kučera, Roman
Ellis, Sam R.
Yamazaki, Ken
Hayward Cooke, Jack
Chekshin, Nikita
Christensen, Kirsten E.
Hamlin, Trevor A.
Dixon, Darren J.
Enantioselective Total Synthesis of (−)-Himalensine A via a Palladium and 4-Hydroxyproline Co-catalyzed Desymmetrization of Vinyl-bromide-tethered Cyclohexanones
title Enantioselective Total Synthesis of (−)-Himalensine A via a Palladium and 4-Hydroxyproline Co-catalyzed Desymmetrization of Vinyl-bromide-tethered Cyclohexanones
title_full Enantioselective Total Synthesis of (−)-Himalensine A via a Palladium and 4-Hydroxyproline Co-catalyzed Desymmetrization of Vinyl-bromide-tethered Cyclohexanones
title_fullStr Enantioselective Total Synthesis of (−)-Himalensine A via a Palladium and 4-Hydroxyproline Co-catalyzed Desymmetrization of Vinyl-bromide-tethered Cyclohexanones
title_full_unstemmed Enantioselective Total Synthesis of (−)-Himalensine A via a Palladium and 4-Hydroxyproline Co-catalyzed Desymmetrization of Vinyl-bromide-tethered Cyclohexanones
title_short Enantioselective Total Synthesis of (−)-Himalensine A via a Palladium and 4-Hydroxyproline Co-catalyzed Desymmetrization of Vinyl-bromide-tethered Cyclohexanones
title_sort enantioselective total synthesis of (−)-himalensine a via a palladium and 4-hydroxyproline co-catalyzed desymmetrization of vinyl-bromide-tethered cyclohexanones
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9999414/
https://www.ncbi.nlm.nih.gov/pubmed/36820616
http://dx.doi.org/10.1021/jacs.2c13710
work_keys_str_mv AT kuceraroman enantioselectivetotalsynthesisofhimalensineaviaapalladiumand4hydroxyprolinecocatalyzeddesymmetrizationofvinylbromidetetheredcyclohexanones
AT ellissamr enantioselectivetotalsynthesisofhimalensineaviaapalladiumand4hydroxyprolinecocatalyzeddesymmetrizationofvinylbromidetetheredcyclohexanones
AT yamazakiken enantioselectivetotalsynthesisofhimalensineaviaapalladiumand4hydroxyprolinecocatalyzeddesymmetrizationofvinylbromidetetheredcyclohexanones
AT haywardcookejack enantioselectivetotalsynthesisofhimalensineaviaapalladiumand4hydroxyprolinecocatalyzeddesymmetrizationofvinylbromidetetheredcyclohexanones
AT chekshinnikita enantioselectivetotalsynthesisofhimalensineaviaapalladiumand4hydroxyprolinecocatalyzeddesymmetrizationofvinylbromidetetheredcyclohexanones
AT christensenkirstene enantioselectivetotalsynthesisofhimalensineaviaapalladiumand4hydroxyprolinecocatalyzeddesymmetrizationofvinylbromidetetheredcyclohexanones
AT hamlintrevora enantioselectivetotalsynthesisofhimalensineaviaapalladiumand4hydroxyprolinecocatalyzeddesymmetrizationofvinylbromidetetheredcyclohexanones
AT dixondarrenj enantioselectivetotalsynthesisofhimalensineaviaapalladiumand4hydroxyprolinecocatalyzeddesymmetrizationofvinylbromidetetheredcyclohexanones