A leaky integrate-and-fire computational model based on the connectome of the entire adult Drosophila brain reveals insights into sensorimotor processing
The forthcoming assembly of the adult Drosophila melanogaster central brain connectome, containing over 125,000 neurons and 50 million synaptic connections, provides a template for examining sensory processing throughout the brain. Here, we create a leaky integrate-and-fire computational model of th...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10187186/ https://www.ncbi.nlm.nih.gov/pubmed/37205514 http://dx.doi.org/10.1101/2023.05.02.539144 |
Sumario: | The forthcoming assembly of the adult Drosophila melanogaster central brain connectome, containing over 125,000 neurons and 50 million synaptic connections, provides a template for examining sensory processing throughout the brain. Here, we create a leaky integrate-and-fire computational model of the entire Drosophila brain, based on neural connectivity and neurotransmitter identity, to study circuit properties of feeding and grooming behaviors. We show that activation of sugar-sensing or water-sensing gustatory neurons in the computational model accurately predicts neurons that respond to tastes and are required for feeding initiation. Computational activation of neurons in the feeding region of the Drosophila brain predicts those that elicit motor neuron firing, a testable hypothesis that we validate by optogenetic activation and behavioral studies. Moreover, computational activation of different classes of gustatory neurons makes accurate predictions of how multiple taste modalities interact, providing circuit-level insight into aversive and appetitive taste processing. Our computational model predicts that the sugar and water pathways form a partially shared appetitive feeding initiation pathway, which our calcium imaging and behavioral experiments confirm. Additionally, we applied this model to mechanosensory circuits and found that computational activation of mechanosensory neurons predicts activation of a small set of neurons comprising the antennal grooming circuit that do not overlap with gustatory circuits, and accurately describes the circuit response upon activation of different mechanosensory subtypes. Our results demonstrate that modeling brain circuits purely from connectivity and predicted neurotransmitter identity generates experimentally testable hypotheses and can accurately describe complete sensorimotor transformations. |
---|