Cargando…
Improving deep learning model performance under parametric constraints for materials informatics applications
Modern machine learning (ML) and deep learning (DL) techniques using high-dimensional data representations have helped accelerate the materials discovery process by efficiently detecting hidden patterns in existing datasets and linking input representations to output properties for a better understa...
Autores principales: | Gupta, Vishu, Peltekian, Alec, Liao, Wei-keng, Choudhary, Alok, Agrawal, Ankit |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10241826/ https://www.ncbi.nlm.nih.gov/pubmed/37277456 http://dx.doi.org/10.1038/s41598-023-36336-5 |
Ejemplares similares
-
Enabling deeper learning on big data for materials informatics applications
por: Jha, Dipendra, et al.
Publicado: (2021) -
Cross-property deep transfer learning framework for enhanced predictive analytics on small materials data
por: Gupta, Vishu, et al.
Publicado: (2021) -
Moving closer to experimental level materials property prediction using AI
por: Jha, Dipendra, et al.
Publicado: (2022) -
MPpredictor: An
Artificial Intelligence-Driven Web
Tool for Composition-Based Material Property Prediction
por: Gupta, Vishu, et al.
Publicado: (2023) -
Enhancing materials property prediction by leveraging computational and experimental data using deep transfer learning
por: Jha, Dipendra, et al.
Publicado: (2019)