Cargando…
Machine learning for predicting the risk stratification of 1–5 cm gastric gastrointestinal stromal tumors based on CT
BACKGROUD: To predict the malignancy of 1–5 cm gastric gastrointestinal stromal tumors (GISTs) by machine learning (ML) on CT images using three models - Logistic Regression (LR), Decision Tree (DT) and Gradient Boosting Decision Tree (GBDT). METHODS: 231 patients from Center 1 were randomly assigne...
Autores principales: | Zhang, Cui, Wang, Jian, Yang, Yang, Dai, Bailing, Xu, Zhihua, Zhu, Fangmei, Yu, Huajun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10327391/ https://www.ncbi.nlm.nih.gov/pubmed/37415125 http://dx.doi.org/10.1186/s12880-023-01053-y |
Ejemplares similares
-
CT differentiation of gastric ectopic pancreas from gastric stromal tumor
por: Liu, Chang, et al.
Publicado: (2021) -
Machine learning-based predictive model for the differential diagnosis of ≤ 5 cm gastric stromal tumor and gastric schwannoma based on CT images
por: Chen, Guoxian, et al.
Publicado: (2023) -
Preoperative CT-Based Deep Learning Model for Predicting Risk Stratification in Patients With Gastrointestinal Stromal Tumors
por: Kang, Bing, et al.
Publicado: (2021) -
Automated machine learning to predict the difficulty for endoscopic resection of gastric gastrointestinal stromal tumor
por: Liu, Luojie, et al.
Publicado: (2023) -
Artificial intelligence in endoscopic ultrasonography: risk
stratification of gastric gastrointestinal stromal tumors
por: Lu, Yi, et al.
Publicado: (2023)