Cargando…
Learning Curves for Noisy Heterogeneous Feature-Subsampled Ridge Ensembles
Feature bagging is a well-established ensembling method which aims to reduce prediction variance by combining predictions of many estimators trained on subsets or projections of features. Here, we develop a theory of feature-bagging in noisy least-squares ridge ensembles and simplify the resulting l...
Autores principales: | Ruben, Benjamin S., Pehlevan, Cengiz |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cornell University
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10350086/ https://www.ncbi.nlm.nih.gov/pubmed/37461424 |
Ejemplares similares
-
Subsampling of cues in associative learning
por: Perez, Omar D., et al.
Publicado: (2022) -
Subsampling
por: Politis, Dimitris N, et al.
Publicado: (1999) -
A semi–automatic system for
subsampling heterogeneous foods
por: Brown, J. F., et al.
Publicado: (1980) -
Subsampling scaling
por: Levina, A., et al.
Publicado: (2017) -
Discriminative machine learning for maximal representative subsampling
por: Hauptmann, Tony, et al.
Publicado: (2023)