A Parametric Empirical Bayesian Framework for the EEG/MEG Inverse Problem: Generative Models for Multi-Subject and Multi-Modal Integration
We review recent methodological developments within a parametric empirical Bayesian (PEB) framework for reconstructing intracranial sources of extracranial electroencephalographic (EEG) and magnetoencephalographic (MEG) data under linear Gaussian assumptions. The PEB framework offers a natural way t...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Research Foundation
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3160752/ https://www.ncbi.nlm.nih.gov/pubmed/21904527 http://dx.doi.org/10.3389/fnhum.2011.00076 |
_version_ | 1782210580576206848 |
---|---|
author | Henson, Richard N. Wakeman, Daniel G. Litvak, Vladimir Friston, Karl J. |
author_facet | Henson, Richard N. Wakeman, Daniel G. Litvak, Vladimir Friston, Karl J. |
author_sort | Henson, Richard N. |
collection | PubMed |
description | We review recent methodological developments within a parametric empirical Bayesian (PEB) framework for reconstructing intracranial sources of extracranial electroencephalographic (EEG) and magnetoencephalographic (MEG) data under linear Gaussian assumptions. The PEB framework offers a natural way to integrate multiple constraints (spatial priors) on this inverse problem, such as those derived from different modalities (e.g., from functional magnetic resonance imaging, fMRI) or from multiple replications (e.g., subjects). Using variations of the same basic generative model, we illustrate the application of PEB to three cases: (1) symmetric integration (fusion) of MEG and EEG; (2) asymmetric integration of MEG or EEG with fMRI, and (3) group-optimization of spatial priors across subjects. We evaluate these applications on multi-modal data acquired from 18 subjects, focusing on energy induced by face perception within a time–frequency window of 100–220 ms, 8–18 Hz. We show the benefits of multi-modal, multi-subject integration in terms of the model evidence and the reproducibility (over subjects) of cortical responses to faces. |
format | Online Article Text |
id | pubmed-3160752 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | Frontiers Research Foundation |
record_format | MEDLINE/PubMed |
spelling | pubmed-31607522011-09-08 A Parametric Empirical Bayesian Framework for the EEG/MEG Inverse Problem: Generative Models for Multi-Subject and Multi-Modal Integration Henson, Richard N. Wakeman, Daniel G. Litvak, Vladimir Friston, Karl J. Front Hum Neurosci Neuroscience We review recent methodological developments within a parametric empirical Bayesian (PEB) framework for reconstructing intracranial sources of extracranial electroencephalographic (EEG) and magnetoencephalographic (MEG) data under linear Gaussian assumptions. The PEB framework offers a natural way to integrate multiple constraints (spatial priors) on this inverse problem, such as those derived from different modalities (e.g., from functional magnetic resonance imaging, fMRI) or from multiple replications (e.g., subjects). Using variations of the same basic generative model, we illustrate the application of PEB to three cases: (1) symmetric integration (fusion) of MEG and EEG; (2) asymmetric integration of MEG or EEG with fMRI, and (3) group-optimization of spatial priors across subjects. We evaluate these applications on multi-modal data acquired from 18 subjects, focusing on energy induced by face perception within a time–frequency window of 100–220 ms, 8–18 Hz. We show the benefits of multi-modal, multi-subject integration in terms of the model evidence and the reproducibility (over subjects) of cortical responses to faces. Frontiers Research Foundation 2011-08-24 /pmc/articles/PMC3160752/ /pubmed/21904527 http://dx.doi.org/10.3389/fnhum.2011.00076 Text en Copyright © 2011 Henson, Wakeman, Litvak and Friston. http://www.frontiersin.org/licenseagreement This is an open-access article subject to a non-exclusive license between the authors and Frontiers Media SA, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and other Frontiers conditions are complied with. |
spellingShingle | Neuroscience Henson, Richard N. Wakeman, Daniel G. Litvak, Vladimir Friston, Karl J. A Parametric Empirical Bayesian Framework for the EEG/MEG Inverse Problem: Generative Models for Multi-Subject and Multi-Modal Integration |
title | A Parametric Empirical Bayesian Framework for the EEG/MEG Inverse Problem: Generative Models for Multi-Subject and Multi-Modal Integration |
title_full | A Parametric Empirical Bayesian Framework for the EEG/MEG Inverse Problem: Generative Models for Multi-Subject and Multi-Modal Integration |
title_fullStr | A Parametric Empirical Bayesian Framework for the EEG/MEG Inverse Problem: Generative Models for Multi-Subject and Multi-Modal Integration |
title_full_unstemmed | A Parametric Empirical Bayesian Framework for the EEG/MEG Inverse Problem: Generative Models for Multi-Subject and Multi-Modal Integration |
title_short | A Parametric Empirical Bayesian Framework for the EEG/MEG Inverse Problem: Generative Models for Multi-Subject and Multi-Modal Integration |
title_sort | parametric empirical bayesian framework for the eeg/meg inverse problem: generative models for multi-subject and multi-modal integration |
topic | Neuroscience |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3160752/ https://www.ncbi.nlm.nih.gov/pubmed/21904527 http://dx.doi.org/10.3389/fnhum.2011.00076 |
work_keys_str_mv | AT hensonrichardn aparametricempiricalbayesianframeworkfortheeegmeginverseproblemgenerativemodelsformultisubjectandmultimodalintegration AT wakemandanielg aparametricempiricalbayesianframeworkfortheeegmeginverseproblemgenerativemodelsformultisubjectandmultimodalintegration AT litvakvladimir aparametricempiricalbayesianframeworkfortheeegmeginverseproblemgenerativemodelsformultisubjectandmultimodalintegration AT fristonkarlj aparametricempiricalbayesianframeworkfortheeegmeginverseproblemgenerativemodelsformultisubjectandmultimodalintegration AT hensonrichardn parametricempiricalbayesianframeworkfortheeegmeginverseproblemgenerativemodelsformultisubjectandmultimodalintegration AT wakemandanielg parametricempiricalbayesianframeworkfortheeegmeginverseproblemgenerativemodelsformultisubjectandmultimodalintegration AT litvakvladimir parametricempiricalbayesianframeworkfortheeegmeginverseproblemgenerativemodelsformultisubjectandmultimodalintegration AT fristonkarlj parametricempiricalbayesianframeworkfortheeegmeginverseproblemgenerativemodelsformultisubjectandmultimodalintegration |