Cargando…
kClust: fast and sensitive clustering of large protein sequence databases
BACKGROUND: Fueled by rapid progress in high-throughput sequencing, the size of public sequence databases doubles every two years. Searching the ever larger and more redundant databases is getting increasingly inefficient. Clustering can help to organize sequences into homologous and functionally si...
Autores principales: | Hauser, Maria, Mayer, Christian E, Söding, Johannes |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3843501/ https://www.ncbi.nlm.nih.gov/pubmed/23945046 http://dx.doi.org/10.1186/1471-2105-14-248 |
Ejemplares similares
-
GenClust: A genetic algorithm for clustering gene expression data
por: Di Gesú, Vito, et al.
Publicado: (2005) -
ClustAGE: a tool for clustering and distribution analysis of bacterial accessory genomic elements
por: Ozer, Egon A.
Publicado: (2018) -
GiniClust3: a fast and memory-efficient tool for rare cell type identification
por: Dong, Rui, et al.
Publicado: (2020) -
Clust: automatic extraction of optimal co-expressed gene clusters from gene expression data
por: Abu-Jamous, Basel, et al.
Publicado: (2018) -
MeShClust v3.0: high-quality clustering of DNA sequences using the mean shift algorithm and alignment-free identity scores
por: Girgis, Hani Z.
Publicado: (2022)