Cargando…

Large-scale automated identification of mouse brain cells in confocal light sheet microscopy images

Motivation: Recently, confocal light sheet microscopy has enabled high-throughput acquisition of whole mouse brain 3D images at the micron scale resolution. This poses the unprecedented challenge of creating accurate digital maps of the whole set of cells in a brain. Results: We introduce a fast and...

Descripción completa

Detalles Bibliográficos
Autores principales: Frasconi, Paolo, Silvestri, Ludovico, Soda, Paolo, Cortini, Roberto, Pavone, Francesco S., Iannello, Giulio
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4147922/
https://www.ncbi.nlm.nih.gov/pubmed/25161251
http://dx.doi.org/10.1093/bioinformatics/btu469
Descripción
Sumario:Motivation: Recently, confocal light sheet microscopy has enabled high-throughput acquisition of whole mouse brain 3D images at the micron scale resolution. This poses the unprecedented challenge of creating accurate digital maps of the whole set of cells in a brain. Results: We introduce a fast and scalable algorithm for fully automated cell identification. We obtained the whole digital map of Purkinje cells in mouse cerebellum consisting of a set of 3D cell center coordinates. The method is accurate and we estimated an F(1) measure of 0.96 using 56 representative volumes, totaling 1.09 GVoxel and containing 4138 manually annotated soma centers. Availability and implementation: Source code and its documentation are available at http://bcfind.dinfo.unifi.it/. The whole pipeline of methods is implemented in Python and makes use of Pylearn2 and modified parts of Scikit-learn. Brain images are available on request. Contact: paolo.frasconi@unifi.it Supplementary information: Supplementary data are available at Bioinformatics online.