Cargando…
Modeling temporal sequences of cognitive state changes based on a combination of EEG-engagement, EEG-workload, and heart rate metrics
The objective of this study was to investigate the feasibility of physiological metrics such as ECG-derived heart rate and EEG-derived cognitive workload and engagement as potential predictors of performance on different training tasks. An unsupervised approach based on self-organizing neural networ...
Autores principales: | Stikic, Maja, Berka, Chris, Levendowski, Daniel J., Rubio, Roberto F., Tan, Veasna, Korszen, Stephanie, Barba, Douglas, Wurzer, David |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4220677/ https://www.ncbi.nlm.nih.gov/pubmed/25414629 http://dx.doi.org/10.3389/fnins.2014.00342 |
Ejemplares similares
-
Eeg-Derived Estimators of Present and Future Cognitive Performance
por: Stikic, Maja, et al.
Publicado: (2011) -
An evaluation of mental workload with frontal EEG
por: So, Winnie K. Y., et al.
Publicado: (2017) -
Measuring Mental Workload with EEG+fNIRS
por: Aghajani, Haleh, et al.
Publicado: (2017) -
EEG-Based Neurocognitive Metrics May Predict Simulated and On-Road Driving Performance in Older Drivers
por: Rupp, Greg, et al.
Publicado: (2019) -
EEG-based workload estimation across affective contexts
por: Mühl, Christian, et al.
Publicado: (2014)