Cargando…
Less Grease, Please. Phosphatidylethanolamine Is the Only Lipid Required for Replication of a (+)RNA Virus
All positive strand RNA viruses of eukaryotes replicate their genomes in association with membranes. These viruses actively change cellular lipid metabolism to build replication membranes enriched in specific lipids. The ubiquitous use of membranes by positive strand RNA viruses apparently holds maj...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4517113/ https://www.ncbi.nlm.nih.gov/pubmed/26131959 http://dx.doi.org/10.3390/v7072784 |
Sumario: | All positive strand RNA viruses of eukaryotes replicate their genomes in association with membranes. These viruses actively change cellular lipid metabolism to build replication membranes enriched in specific lipids. The ubiquitous use of membranes by positive strand RNA viruses apparently holds major evolutionary advantages; however our understanding of the mechanistic role of membranes, let alone of specific lipid components of the membrane bilayer, in the viral replication cycle is minimal. The replication complexes that can be isolated from infected cells, or reconstituted in vitro from crude cell lysates, do not allow controlled manipulation of the membrane constituents thus limiting their usefulness for understanding how exactly membranes support the replication reaction. Recent work from Peter Nagy group demonstrates that replication of a model positive strand RNA virus can be reconstituted in the in vitro reaction with liposomes of chemically defined composition and reveals an exclusive role of phosphatidylethanolamine in sustaining efficient viral RNA replication. This study opens new possibilities for investigation of membrane contribution in the replication process that may ultimately lead to development of novel broad spectrum antiviral compounds targeting the membrane-dependent elements of the replication cycle conserved among diverse groups of viruses. |
---|