Cargando…
Prediction With Dimension Reduction of Multiple Molecular Data Sources for Patient Survival
Predictive modeling from high-dimensional genomic data is often preceded by a dimension reduction step, such as principal component analysis (PCA). However, the application of PCA is not straightforward for multisource data, wherein multiple sources of ‘omics data measure different but related biolo...
Autores principales: | Kaplan, Adam, Lock, Eric F |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5510774/ https://www.ncbi.nlm.nih.gov/pubmed/28747816 http://dx.doi.org/10.1177/1176935117718517 |
Ejemplares similares
-
Dimension reduction and shrinkage methods for high dimensional disease risk scores in historical data
por: Kumamaru, Hiraku, et al.
Publicado: (2016) -
A dimension reduction technique applied to regression on high dimension, low sample size neurophysiological data sets
por: Santana, Adrielle C., et al.
Publicado: (2021) -
Dimension reduction with gene expression data using targeted variable importance measurement
por: Wang, Hui, et al.
Publicado: (2011) -
Fast dimension reduction and integrative clustering of multi-omics data using low-rank approximation: application to cancer molecular classification
por: Wu, Dingming, et al.
Publicado: (2015) -
Gene set analysis using sufficient dimension reduction
por: Hsueh, Huey-Miin, et al.
Publicado: (2016)