The role of disease-linked residue glutamine-913 in support of the structure and function of the human electrogenic sodium/bicarbonate cotransporter NBCe1-A

Mutations in the sodium bicarbonate cotransporter NBCe1 (SLC4A4) cause proximal renal tubular acidosis (pRTA). We recently described a novel pRTA mutation p.Gln913Arg (Q913R), inherited in compound heterozygous form with p.Arg510His (R510H). Q913R causes intracellular retention of NBCe1 and a ‘gain...

Descripción completa

Detalles Bibliográficos
Autores principales: Myers, Evan J., Marshall, Aniko, Parker, Mark D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5814396/
https://www.ncbi.nlm.nih.gov/pubmed/29449648
http://dx.doi.org/10.1038/s41598-018-20488-w
Descripción
Sumario:Mutations in the sodium bicarbonate cotransporter NBCe1 (SLC4A4) cause proximal renal tubular acidosis (pRTA). We recently described a novel pRTA mutation p.Gln913Arg (Q913R), inherited in compound heterozygous form with p.Arg510His (R510H). Q913R causes intracellular retention of NBCe1 and a ‘gain of function’ Cl(−) leak. To learn more about the importance of glutamine at position 913, we substituted a variety of alternative amino-acid residues (Cys, Glu, Lys, Leu, Ser) at position 913. Studying cRNA-injected Xenopus oocytes by voltage clamp, we find that most de novo mutants exhibit close-to-normal NBCe1 activity; only Q913K expresses a Cl(−) leak. Studying transiently-transfected, polarised kidney cells by fluorescence microscopy we find that most de novo mutants (except Q913E) are intracellularly retained. A 3D homology model predicts that Gln913 is located in the gating domain of NBCe1 and neighbours the 3D space occupied by another pRTA-associated residue (Arg881), highlighting an important and conformationally-sensitive region of NBCe1. We conclude that the intracellular retention of Q913R is caused by the loss of Gln at position 913, but that the manifestation of the Cl(−) leak is related to the introduction of Arg at position 913. Our findings will inform future studies to elucidate the nature and the consequences of the leak.