Cargando…
A Semantic Labeling Approach for Accurate Weed Mapping of High Resolution UAV Imagery
Weed control is necessary in rice cultivation, but the excessive use of herbicide treatments has led to serious agronomic and environmental problems. Suitable site-specific weed management (SSWM) is a solution to address this problem while maintaining the rice production quality and quantity. In the...
Autores principales: | Huang, Huasheng, Lan, Yubin, Deng, Jizhong, Yang, Aqing, Deng, Xiaoling, Zhang, Lei, Wen, Sheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6069478/ https://www.ncbi.nlm.nih.gov/pubmed/29966392 http://dx.doi.org/10.3390/s18072113 |
Ejemplares similares
-
Accurate Weed Mapping and Prescription Map Generation Based on Fully Convolutional Networks Using UAV Imagery
por: Huang, Huasheng, et al.
Publicado: (2018) -
A fully convolutional network for weed mapping of unmanned aerial vehicle (UAV) imagery
por: Huang, Huasheng, et al.
Publicado: (2018) -
Application of Multilayer Perceptron with Automatic Relevance Determination on Weed Mapping Using UAV Multispectral Imagery
por: Tamouridou, Afroditi A., et al.
Publicado: (2017) -
Semi-supervised Learning for Weed and Crop Segmentation Using UAV Imagery
por: Nong, Chunshi, et al.
Publicado: (2022) -
High-Resolution Aerial Imagery Semantic Labeling with Dense Pyramid Network
por: Pan, Xuran, et al.
Publicado: (2018)