Selectivity Map for Molecular Beam Epitaxy of Advanced III–V Quantum Nanowire Networks
[Image: see text] Selective-area growth is a promising technique for enabling of the fabrication of the scalable III–V nanowire networks required to test proposals for Majorana-based quantum computing devices. However, the contours of the growth parameter window resulting in selective growth remain...
Autores principales: | , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American
Chemical
Society
2018
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6331184/ https://www.ncbi.nlm.nih.gov/pubmed/30521341 http://dx.doi.org/10.1021/acs.nanolett.8b03733 |
_version_ | 1783387101447847936 |
---|---|
author | Aseev, Pavel Fursina, Alexandra Boekhout, Frenk Krizek, Filip Sestoft, Joachim E. Borsoi, Francesco Heedt, Sebastian Wang, Guanzhong Binci, Luca Martí-Sánchez, Sara Swoboda, Timm Koops, René Uccelli, Emanuele Arbiol, Jordi Krogstrup, Peter Kouwenhoven, Leo P. Caroff, Philippe |
author_facet | Aseev, Pavel Fursina, Alexandra Boekhout, Frenk Krizek, Filip Sestoft, Joachim E. Borsoi, Francesco Heedt, Sebastian Wang, Guanzhong Binci, Luca Martí-Sánchez, Sara Swoboda, Timm Koops, René Uccelli, Emanuele Arbiol, Jordi Krogstrup, Peter Kouwenhoven, Leo P. Caroff, Philippe |
author_sort | Aseev, Pavel |
collection | PubMed |
description | [Image: see text] Selective-area growth is a promising technique for enabling of the fabrication of the scalable III–V nanowire networks required to test proposals for Majorana-based quantum computing devices. However, the contours of the growth parameter window resulting in selective growth remain undefined. Herein, we present a set of experimental techniques that unambiguously establish the parameter space window resulting in selective III–V nanowire networks growth by molecular beam epitaxy. Selectivity maps are constructed for both GaAs and InAs compounds based on in situ characterization of growth kinetics on GaAs(001) substrates, where the difference in group III adatom desorption rates between the III–V surface and the amorphous mask area is identified as the primary mechanism governing selectivity. The broad applicability of this method is demonstrated by the successful realization of high-quality InAs and GaAs nanowire networks on GaAs, InP, and InAs substrates of both (001) and (111)B orientations as well as homoepitaxial InSb nanowire networks. Finally, phase coherence in Aharonov–Bohm ring experiments validates the potential of these crystals for nanoelectronics and quantum transport applications. This work should enable faster and better nanoscale crystal engineering over a range of compound semiconductors for improved device performance. |
format | Online Article Text |
id | pubmed-6331184 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | American
Chemical
Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-63311842019-01-17 Selectivity Map for Molecular Beam Epitaxy of Advanced III–V Quantum Nanowire Networks Aseev, Pavel Fursina, Alexandra Boekhout, Frenk Krizek, Filip Sestoft, Joachim E. Borsoi, Francesco Heedt, Sebastian Wang, Guanzhong Binci, Luca Martí-Sánchez, Sara Swoboda, Timm Koops, René Uccelli, Emanuele Arbiol, Jordi Krogstrup, Peter Kouwenhoven, Leo P. Caroff, Philippe Nano Lett [Image: see text] Selective-area growth is a promising technique for enabling of the fabrication of the scalable III–V nanowire networks required to test proposals for Majorana-based quantum computing devices. However, the contours of the growth parameter window resulting in selective growth remain undefined. Herein, we present a set of experimental techniques that unambiguously establish the parameter space window resulting in selective III–V nanowire networks growth by molecular beam epitaxy. Selectivity maps are constructed for both GaAs and InAs compounds based on in situ characterization of growth kinetics on GaAs(001) substrates, where the difference in group III adatom desorption rates between the III–V surface and the amorphous mask area is identified as the primary mechanism governing selectivity. The broad applicability of this method is demonstrated by the successful realization of high-quality InAs and GaAs nanowire networks on GaAs, InP, and InAs substrates of both (001) and (111)B orientations as well as homoepitaxial InSb nanowire networks. Finally, phase coherence in Aharonov–Bohm ring experiments validates the potential of these crystals for nanoelectronics and quantum transport applications. This work should enable faster and better nanoscale crystal engineering over a range of compound semiconductors for improved device performance. American Chemical Society 2018-12-06 2019-01-09 /pmc/articles/PMC6331184/ /pubmed/30521341 http://dx.doi.org/10.1021/acs.nanolett.8b03733 Text en Copyright © 2018 American Chemical Society This is an open access article published under a Creative Commons Non-Commercial No Derivative Works (CC-BY-NC-ND) Attribution License (http://pubs.acs.org/page/policy/authorchoice_ccbyncnd_termsofuse.html) , which permits copying and redistribution of the article, and creation of adaptations, all for non-commercial purposes. |
spellingShingle | Aseev, Pavel Fursina, Alexandra Boekhout, Frenk Krizek, Filip Sestoft, Joachim E. Borsoi, Francesco Heedt, Sebastian Wang, Guanzhong Binci, Luca Martí-Sánchez, Sara Swoboda, Timm Koops, René Uccelli, Emanuele Arbiol, Jordi Krogstrup, Peter Kouwenhoven, Leo P. Caroff, Philippe Selectivity Map for Molecular Beam Epitaxy of Advanced III–V Quantum Nanowire Networks |
title | Selectivity Map for Molecular Beam Epitaxy of Advanced
III–V Quantum Nanowire Networks |
title_full | Selectivity Map for Molecular Beam Epitaxy of Advanced
III–V Quantum Nanowire Networks |
title_fullStr | Selectivity Map for Molecular Beam Epitaxy of Advanced
III–V Quantum Nanowire Networks |
title_full_unstemmed | Selectivity Map for Molecular Beam Epitaxy of Advanced
III–V Quantum Nanowire Networks |
title_short | Selectivity Map for Molecular Beam Epitaxy of Advanced
III–V Quantum Nanowire Networks |
title_sort | selectivity map for molecular beam epitaxy of advanced
iii–v quantum nanowire networks |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6331184/ https://www.ncbi.nlm.nih.gov/pubmed/30521341 http://dx.doi.org/10.1021/acs.nanolett.8b03733 |
work_keys_str_mv | AT aseevpavel selectivitymapformolecularbeamepitaxyofadvancediiivquantumnanowirenetworks AT fursinaalexandra selectivitymapformolecularbeamepitaxyofadvancediiivquantumnanowirenetworks AT boekhoutfrenk selectivitymapformolecularbeamepitaxyofadvancediiivquantumnanowirenetworks AT krizekfilip selectivitymapformolecularbeamepitaxyofadvancediiivquantumnanowirenetworks AT sestoftjoachime selectivitymapformolecularbeamepitaxyofadvancediiivquantumnanowirenetworks AT borsoifrancesco selectivitymapformolecularbeamepitaxyofadvancediiivquantumnanowirenetworks AT heedtsebastian selectivitymapformolecularbeamepitaxyofadvancediiivquantumnanowirenetworks AT wangguanzhong selectivitymapformolecularbeamepitaxyofadvancediiivquantumnanowirenetworks AT binciluca selectivitymapformolecularbeamepitaxyofadvancediiivquantumnanowirenetworks AT martisanchezsara selectivitymapformolecularbeamepitaxyofadvancediiivquantumnanowirenetworks AT swobodatimm selectivitymapformolecularbeamepitaxyofadvancediiivquantumnanowirenetworks AT koopsrene selectivitymapformolecularbeamepitaxyofadvancediiivquantumnanowirenetworks AT uccelliemanuele selectivitymapformolecularbeamepitaxyofadvancediiivquantumnanowirenetworks AT arbioljordi selectivitymapformolecularbeamepitaxyofadvancediiivquantumnanowirenetworks AT krogstruppeter selectivitymapformolecularbeamepitaxyofadvancediiivquantumnanowirenetworks AT kouwenhovenleop selectivitymapformolecularbeamepitaxyofadvancediiivquantumnanowirenetworks AT caroffphilippe selectivitymapformolecularbeamepitaxyofadvancediiivquantumnanowirenetworks |