Cargando…

Microdialysis Determination of Cefquinome Pharmacokinetics in Murine Thigh From Healthy, Neutropenic, and Actinobacillus pleuropneumoniae-Infected Mice

This study was aimed at applying microdialysis to explore cefquinome pharmacokinetics in thigh and plasma of healthy, neutropenic, and Actinobacillus pleuropneumoniae-infected mice. The relative recoveries (RRs) were tested in vitro by dialysis and retrodialysis and in vivo by retrodialysis. ICR mic...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Longfei, Yao, Lihua, Kang, Zheng, Huang, Zilong, Gu, Xiaoyan, Shen, Xiangguang, Ding, Huanzhong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6422941/
https://www.ncbi.nlm.nih.gov/pubmed/30914957
http://dx.doi.org/10.3389/fphar.2019.00249
Descripción
Sumario:This study was aimed at applying microdialysis to explore cefquinome pharmacokinetics in thigh and plasma of healthy, neutropenic, and Actinobacillus pleuropneumoniae-infected mice. The relative recoveries (RRs) were tested in vitro by dialysis and retrodialysis and in vivo by retrodialysis. ICR mice were randomly divided into four groups: H-40 (healthy mice receiving cefquinome at 40 mg/kg), H-160, N-40 (neutropenic mice), and I-40 mg/kg (thigh infected-mice with A. pleuropneumoniae). After cefquinome administration, plasma was collected by retro-orbital puncture and thigh dialysate was collected by using a microdialysis probe with Ringer’s solution at a perfusion rate of 1.5 μL/min. Plasma and thigh dialysate samples were assessed by HPLC–MS/MS and analyzed by a non-compartment model. The mean in vivo recoveries in the thigh were 39.35, 38.59, and 37.29% for healthy, neutropenic, and infected mice, respectively. The mean plasma protein-binding level was 16.40% and was independent of drug concentrations. For all groups, the mean values of the free AUC(inf) in plasma were higher than those in murine thigh, while the elimination T(1/2β) for plasma were lower than those for murine thigh. Cefquinome penetration (AUC(thigh)/AUC(plasma)) from the plasma to thigh was 0.76, 0.88, 0.47, and 0.98 for H-40, N-40, I-40, and H-160 mg/kg, respectively. These results indicated that infection significantly affected cefquinome pharmacokinetics in murine thigh. In conclusion, we successfully applied a microdialysis method to evaluate the pharmacokinetics of cefquinome in murine thigh of healthy, neutropenic, and A. pleuropneumonia-infected mice and the pharmacokinetics of cefquinome was obviously affected by infection in thigh.