Cargando…
Smart Camera Aware Crowd Counting via Multiple Task Fractional Stride Deep Learning †
Estimating the number of people in highly clustered crowd scenes is an extremely challenging task on account of serious occlusion and non-uniformity distribution in one crowd image. Traditional works on crowd counting take advantage of different CNN like networks to regress crowd density map, and fu...
Autores principales: | Tong, Minglei, Fan, Lyuyuan, Nan, Hao, Zhao, Yan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6471139/ https://www.ncbi.nlm.nih.gov/pubmed/30889874 http://dx.doi.org/10.3390/s19061346 |
Ejemplares similares
-
Stride-to-stride variability while backward counting among healthy young adults
por: Beauchet, Olivier, et al.
Publicado: (2005) -
MiCrowd: Vision-Based Deep Crowd Counting on MCU
por: Son, Sungwook, et al.
Publicado: (2023) -
HRANet: Hierarchical region-aware network for crowd counting
por: Xie, Jinyang, et al.
Publicado: (2022) -
The Effects of Counting the Stride Numbers on the Parkinsonian Gait: Suggesting a Possible Reason for Dual Task Interference
por: Sarbaz, Yashar, et al.
Publicado: (2019) -
Context-Aware Multi-Scale Aggregation Network for Congested Crowd Counting
por: Huang, Liangjun, et al.
Publicado: (2022)