Cargando…
Models that learn how humans learn: The case of decision-making and its disorders
Popular computational models of decision-making make specific assumptions about learning processes that may cause them to underfit observed behaviours. Here we suggest an alternative method using recurrent neural networks (RNNs) to generate a flexible family of models that have sufficient capacity t...
Autores principales: | Dezfouli, Amir, Griffiths, Kristi, Ramos, Fabio, Dayan, Peter, Balleine, Bernard W. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6588260/ https://www.ncbi.nlm.nih.gov/pubmed/31185008 http://dx.doi.org/10.1371/journal.pcbi.1006903 |
Ejemplares similares
-
Learning the structure of the world: The adaptive nature of state-space and action representations in multi-stage decision-making
por: Dezfouli, Amir, et al.
Publicado: (2019) -
Adversarial vulnerabilities of human decision-making
por: Dezfouli, Amir, et al.
Publicado: (2020) -
Action-value comparisons in the dorsolateral prefrontal cortex control choice between goal-directed actions
por: Morris, Richard W., et al.
Publicado: (2014) -
Actions, Action Sequences and Habits: Evidence That Goal-Directed and Habitual Action Control Are Hierarchically Organized
por: Dezfouli, Amir, et al.
Publicado: (2013) -
Hierarchical Action Control: Adaptive Collaboration Between Actions and Habits
por: Balleine, Bernard W., et al.
Publicado: (2019)