Cargando…
Time series modeling of cell cycle exit identifies Brd4 dependent regulation of cerebellar neurogenesis
Cerebellar neuronal progenitors undergo a series of divisions before irreversibly exiting the cell cycle and differentiating into neurons. Dysfunction of this process underlies many neurological diseases including ataxia and the most common pediatric brain tumor, medulloblastoma. To better define th...
Autores principales: | , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6620341/ https://www.ncbi.nlm.nih.gov/pubmed/31292434 http://dx.doi.org/10.1038/s41467-019-10799-5 |
_version_ | 1783434029165445120 |
---|---|
author | Penas, Clara Maloof, Marie E. Stathias, Vasileios Long, Jun Tan, Sze Kiat Mier, Jose Fang, Yin Valdes, Camilo Rodriguez-Blanco, Jezabel Chiang, Cheng-Ming Robbins, David J. Liebl, Daniel J. Lee, Jae K. Hatten, Mary E. Clarke, Jennifer Ayad, Nagi G. |
author_facet | Penas, Clara Maloof, Marie E. Stathias, Vasileios Long, Jun Tan, Sze Kiat Mier, Jose Fang, Yin Valdes, Camilo Rodriguez-Blanco, Jezabel Chiang, Cheng-Ming Robbins, David J. Liebl, Daniel J. Lee, Jae K. Hatten, Mary E. Clarke, Jennifer Ayad, Nagi G. |
author_sort | Penas, Clara |
collection | PubMed |
description | Cerebellar neuronal progenitors undergo a series of divisions before irreversibly exiting the cell cycle and differentiating into neurons. Dysfunction of this process underlies many neurological diseases including ataxia and the most common pediatric brain tumor, medulloblastoma. To better define the pathways controlling the most abundant neuronal cells in the mammalian cerebellum, cerebellar granule cell progenitors (GCPs), we performed RNA-sequencing of GCPs exiting the cell cycle. Time-series modeling of GCP cell cycle exit identified downregulation of activity of the epigenetic reader protein Brd4. Brd4 binding to the Gli1 locus is controlled by Casein Kinase 1δ (CK1 δ)-dependent phosphorylation during GCP proliferation, and decreases during GCP cell cycle exit. Importantly, conditional deletion of Brd4 in vivo in the developing cerebellum induces cerebellar morphological deficits and ataxia. These studies define an essential role for Brd4 in cerebellar granule cell neurogenesis and are critical for designing clinical trials utilizing Brd4 inhibitors in neurological indications. |
format | Online Article Text |
id | pubmed-6620341 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-66203412019-07-15 Time series modeling of cell cycle exit identifies Brd4 dependent regulation of cerebellar neurogenesis Penas, Clara Maloof, Marie E. Stathias, Vasileios Long, Jun Tan, Sze Kiat Mier, Jose Fang, Yin Valdes, Camilo Rodriguez-Blanco, Jezabel Chiang, Cheng-Ming Robbins, David J. Liebl, Daniel J. Lee, Jae K. Hatten, Mary E. Clarke, Jennifer Ayad, Nagi G. Nat Commun Article Cerebellar neuronal progenitors undergo a series of divisions before irreversibly exiting the cell cycle and differentiating into neurons. Dysfunction of this process underlies many neurological diseases including ataxia and the most common pediatric brain tumor, medulloblastoma. To better define the pathways controlling the most abundant neuronal cells in the mammalian cerebellum, cerebellar granule cell progenitors (GCPs), we performed RNA-sequencing of GCPs exiting the cell cycle. Time-series modeling of GCP cell cycle exit identified downregulation of activity of the epigenetic reader protein Brd4. Brd4 binding to the Gli1 locus is controlled by Casein Kinase 1δ (CK1 δ)-dependent phosphorylation during GCP proliferation, and decreases during GCP cell cycle exit. Importantly, conditional deletion of Brd4 in vivo in the developing cerebellum induces cerebellar morphological deficits and ataxia. These studies define an essential role for Brd4 in cerebellar granule cell neurogenesis and are critical for designing clinical trials utilizing Brd4 inhibitors in neurological indications. Nature Publishing Group UK 2019-07-10 /pmc/articles/PMC6620341/ /pubmed/31292434 http://dx.doi.org/10.1038/s41467-019-10799-5 Text en © The Author(s) 2019 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Penas, Clara Maloof, Marie E. Stathias, Vasileios Long, Jun Tan, Sze Kiat Mier, Jose Fang, Yin Valdes, Camilo Rodriguez-Blanco, Jezabel Chiang, Cheng-Ming Robbins, David J. Liebl, Daniel J. Lee, Jae K. Hatten, Mary E. Clarke, Jennifer Ayad, Nagi G. Time series modeling of cell cycle exit identifies Brd4 dependent regulation of cerebellar neurogenesis |
title | Time series modeling of cell cycle exit identifies Brd4 dependent regulation of cerebellar neurogenesis |
title_full | Time series modeling of cell cycle exit identifies Brd4 dependent regulation of cerebellar neurogenesis |
title_fullStr | Time series modeling of cell cycle exit identifies Brd4 dependent regulation of cerebellar neurogenesis |
title_full_unstemmed | Time series modeling of cell cycle exit identifies Brd4 dependent regulation of cerebellar neurogenesis |
title_short | Time series modeling of cell cycle exit identifies Brd4 dependent regulation of cerebellar neurogenesis |
title_sort | time series modeling of cell cycle exit identifies brd4 dependent regulation of cerebellar neurogenesis |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6620341/ https://www.ncbi.nlm.nih.gov/pubmed/31292434 http://dx.doi.org/10.1038/s41467-019-10799-5 |
work_keys_str_mv | AT penasclara timeseriesmodelingofcellcycleexitidentifiesbrd4dependentregulationofcerebellarneurogenesis AT maloofmariee timeseriesmodelingofcellcycleexitidentifiesbrd4dependentregulationofcerebellarneurogenesis AT stathiasvasileios timeseriesmodelingofcellcycleexitidentifiesbrd4dependentregulationofcerebellarneurogenesis AT longjun timeseriesmodelingofcellcycleexitidentifiesbrd4dependentregulationofcerebellarneurogenesis AT tanszekiat timeseriesmodelingofcellcycleexitidentifiesbrd4dependentregulationofcerebellarneurogenesis AT mierjose timeseriesmodelingofcellcycleexitidentifiesbrd4dependentregulationofcerebellarneurogenesis AT fangyin timeseriesmodelingofcellcycleexitidentifiesbrd4dependentregulationofcerebellarneurogenesis AT valdescamilo timeseriesmodelingofcellcycleexitidentifiesbrd4dependentregulationofcerebellarneurogenesis AT rodriguezblancojezabel timeseriesmodelingofcellcycleexitidentifiesbrd4dependentregulationofcerebellarneurogenesis AT chiangchengming timeseriesmodelingofcellcycleexitidentifiesbrd4dependentregulationofcerebellarneurogenesis AT robbinsdavidj timeseriesmodelingofcellcycleexitidentifiesbrd4dependentregulationofcerebellarneurogenesis AT liebldanielj timeseriesmodelingofcellcycleexitidentifiesbrd4dependentregulationofcerebellarneurogenesis AT leejaek timeseriesmodelingofcellcycleexitidentifiesbrd4dependentregulationofcerebellarneurogenesis AT hattenmarye timeseriesmodelingofcellcycleexitidentifiesbrd4dependentregulationofcerebellarneurogenesis AT clarkejennifer timeseriesmodelingofcellcycleexitidentifiesbrd4dependentregulationofcerebellarneurogenesis AT ayadnagig timeseriesmodelingofcellcycleexitidentifiesbrd4dependentregulationofcerebellarneurogenesis |