Cargando…
Wnt canonical pathway activator TWS119 drives microglial anti-inflammatory activation and facilitates neurological recovery following experimental stroke
BACKGROUND: Ischemic stroke is a leading cause of disability worldwide and characteristically accompanied by downregulation of the Wnt/β-catenin signaling. Activation of Wnt/β-catenin signaling emerges to attenuate neuroinflammation after ischemic stroke; however, its effect on modulating microglial...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6896312/ https://www.ncbi.nlm.nih.gov/pubmed/31810470 http://dx.doi.org/10.1186/s12974-019-1660-8 |
Sumario: | BACKGROUND: Ischemic stroke is a leading cause of disability worldwide and characteristically accompanied by downregulation of the Wnt/β-catenin signaling. Activation of Wnt/β-catenin signaling emerges to attenuate neuroinflammation after ischemic stroke; however, its effect on modulating microglial polarization is largely unknown. Here, we explored whether Wnt/β-catenin pathway activator TWS119 facilitated long-term neurological recovery via modulating microglia polarization after experimental stroke. METHODS: Ischemic stroke mice model was induced by permanent distal middle cerebral artery occlusion plus 1 h hypoxia. TWS119 was administrated from day 1 to 14 after stroke. Neurological deficits were monitored up to 21 days after stroke. Angiogenesis, neural plasticity, microglial polarization, and microglia-associated inflammatory cytokines were detected in the peri-infarct cortex at days 14 and 21 after stroke. Primary microglia and mouse brain microvascular endothelial cell lines were employed to explore the underlying mechanism in vitro. RESULTS: TWS119 mitigated neurological deficits at days 14 and 21 after experimental stroke, paralleled by acceleration on angiogenesis and neural plasticity in the peri-infarct cortex. Mechanistically, cerebral ischemia induced production of microglia-associated proinflammatory cytokines and priming of activated microglia toward pro-inflammatory polarization, whereas TWS119 ameliorated microglia-mediated neuroinflammatory status following ischemic stroke and promoted angiogenesis by modulating microglia to anti-inflammatory phenotype. The beneficial efficacy of TWS119 in microglial polarization was largely reversed by selective Wnt/β-catenin pathway blockade in vitro, suggesting that TWS119-enabled pro-inflammatory to anti-inflammatory phenotype switch of microglia was possibly mediated by Wnt/β-catenin signaling. CONCLUSIONS: Wnt/β-catenin pathway activator TWS119 ameliorated neuroinflammatory microenvironment following chronic cerebral ischemia via modulating microglia towards anti-inflammatory phenotype, and facilitates neurological recovery in an anti-inflammatory phenotype polarization-dependent manner. Activation of Wnt/β-catenin pathway following ischemic stroke might be a potential restorative strategy targeting microglia-mediated neuroinflammation. |
---|