Cargando…
Genetic Risk Score Increased Discriminant Efficiency of Predictive Models for Type 2 Diabetes Mellitus Using Machine Learning: Cohort Study
Background: Previous studies have constructed prediction models for type 2 diabetes mellitus (T2DM), but machine learning was rarely used and few focused on genetic prediction. This study aimed to establish an effective T2DM prediction tool and to further explore the potential of genetic risk scores...
Autores principales: | Wang, Yikang, Zhang, Liying, Niu, Miaomiao, Li, Ruiying, Tu, Runqi, Liu, Xiaotian, Hou, Jian, Mao, Zhenxing, Wang, Zhenfei, Wang, Chongjian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7925839/ https://www.ncbi.nlm.nih.gov/pubmed/33681127 http://dx.doi.org/10.3389/fpubh.2021.606711 |
Ejemplares similares
-
Genetic factors increase the identification efficiency of predictive models for dyslipidaemia: a prospective cohort study
por: Niu, Miaomiao, et al.
Publicado: (2021) -
Lifestyle Score and Genetic Factors With Hypertension and Blood Pressure Among Adults in Rural China
por: Niu, Miaomiao, et al.
Publicado: (2021) -
Machine learning for characterizing risk of type 2 diabetes mellitus in a rural Chinese population: the Henan Rural Cohort Study
por: Zhang, Liying, et al.
Publicado: (2020) -
The prevalence and influencing factors of physical activity and sedentary behaviour in the rural population in China: the Henan Rural Cohort Study
por: Tu, Runqi, et al.
Publicado: (2019) -
The Association of Body Fat Percentage With Hypertension in a Chinese Rural Population: The Henan Rural Cohort Study
por: Li, Ruiying, et al.
Publicado: (2020)