Cargando…

Classification of Standing and Walking States Using Ground Reaction Forces

The operation of wearable robots, such as gait rehabilitation robots, requires real-time classification of the standing or walking state of the wearer. This report explains a technique that measures the ground reaction force (GRF) using an insole device equipped with force sensing resistors, and det...

Descripción completa

Detalles Bibliográficos
Autores principales: Park, Ji Su, Koo, Sang-Mo, Kim, Choong Hyun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8003339/
https://www.ncbi.nlm.nih.gov/pubmed/33803909
http://dx.doi.org/10.3390/s21062145
_version_ 1783671666398724096
author Park, Ji Su
Koo, Sang-Mo
Kim, Choong Hyun
author_facet Park, Ji Su
Koo, Sang-Mo
Kim, Choong Hyun
author_sort Park, Ji Su
collection PubMed
description The operation of wearable robots, such as gait rehabilitation robots, requires real-time classification of the standing or walking state of the wearer. This report explains a technique that measures the ground reaction force (GRF) using an insole device equipped with force sensing resistors, and detects whether the insole wearer is standing or walking based on the measured results. The technique developed in the present study uses the waveform length that represents the sum of the changes in the center of pressure within an arbitrary time window as the determining factor, and applies this factor to a conventional threshold method and an artificial neural network (ANN) model for classification of the standing and walking states. The results showed that applying the newly developed technique could significantly reduce classification errors due to shuffling movements of the patient, typically noticed in the conventional threshold method using GRF, i.e., real-time classification of the standing and walking states is possible in the ANN model. The insole device used in the present study can be applied not only to gait analysis systems used in wearable robot operations, but also as a device for remotely monitoring the activities of daily living of the wearer.
format Online
Article
Text
id pubmed-8003339
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-80033392021-03-28 Classification of Standing and Walking States Using Ground Reaction Forces Park, Ji Su Koo, Sang-Mo Kim, Choong Hyun Sensors (Basel) Article The operation of wearable robots, such as gait rehabilitation robots, requires real-time classification of the standing or walking state of the wearer. This report explains a technique that measures the ground reaction force (GRF) using an insole device equipped with force sensing resistors, and detects whether the insole wearer is standing or walking based on the measured results. The technique developed in the present study uses the waveform length that represents the sum of the changes in the center of pressure within an arbitrary time window as the determining factor, and applies this factor to a conventional threshold method and an artificial neural network (ANN) model for classification of the standing and walking states. The results showed that applying the newly developed technique could significantly reduce classification errors due to shuffling movements of the patient, typically noticed in the conventional threshold method using GRF, i.e., real-time classification of the standing and walking states is possible in the ANN model. The insole device used in the present study can be applied not only to gait analysis systems used in wearable robot operations, but also as a device for remotely monitoring the activities of daily living of the wearer. MDPI 2021-03-18 /pmc/articles/PMC8003339/ /pubmed/33803909 http://dx.doi.org/10.3390/s21062145 Text en © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Park, Ji Su
Koo, Sang-Mo
Kim, Choong Hyun
Classification of Standing and Walking States Using Ground Reaction Forces
title Classification of Standing and Walking States Using Ground Reaction Forces
title_full Classification of Standing and Walking States Using Ground Reaction Forces
title_fullStr Classification of Standing and Walking States Using Ground Reaction Forces
title_full_unstemmed Classification of Standing and Walking States Using Ground Reaction Forces
title_short Classification of Standing and Walking States Using Ground Reaction Forces
title_sort classification of standing and walking states using ground reaction forces
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8003339/
https://www.ncbi.nlm.nih.gov/pubmed/33803909
http://dx.doi.org/10.3390/s21062145
work_keys_str_mv AT parkjisu classificationofstandingandwalkingstatesusinggroundreactionforces
AT koosangmo classificationofstandingandwalkingstatesusinggroundreactionforces
AT kimchoonghyun classificationofstandingandwalkingstatesusinggroundreactionforces