Cargando…
Resilient SARS-CoV-2 diagnostics workflows including viral heat inactivation
There is a worldwide need for reagents to perform SARS-CoV-2 detection. Some laboratories have implemented kit-free protocols, but many others do not have the capacity to develop these and/or perform manual processing. We provide multiple workflows for SARS-CoV-2 nucleic acid detection in clinical s...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8043481/ https://www.ncbi.nlm.nih.gov/pubmed/33851184 http://dx.doi.org/10.1101/2020.04.22.20074351 |
_version_ | 1783678313475080192 |
---|---|
author | Lista, Maria Jose Matos, Pedro M. Maguire, Thomas J. A. Poulton, Kate Ortiz-Zapater, Elena Page, Robert Sertkaya, Helin Ortega-Prieto, Ana M. O’Byrne, Aoife M. Bouton, Clement Dickenson, Ruth E Ficarelli, Mattia Jimenez-Guardeño, Jose M. Howard, Mark Betancor, Gilberto Galao, Rui Pedro Pickering, Suzanne Signell, Adrian W Wilson, Harry Cliff, Penelope Ik, Mark Tan Kia Patel, Amita MacMahon, Eithne Cunningham, Emma Doores, Katie Agromayor, Monica Martin-Serrano, Juan Perucha, Esperanza Mischo, Hannah E. Shankar-Hari, Manu Batra, Rahul Edgeworth, Jonathan Zuckerman, Mark Malim, Michael H. Neil, Stuart Martinez-Nunez, Rocio Teresa |
author_facet | Lista, Maria Jose Matos, Pedro M. Maguire, Thomas J. A. Poulton, Kate Ortiz-Zapater, Elena Page, Robert Sertkaya, Helin Ortega-Prieto, Ana M. O’Byrne, Aoife M. Bouton, Clement Dickenson, Ruth E Ficarelli, Mattia Jimenez-Guardeño, Jose M. Howard, Mark Betancor, Gilberto Galao, Rui Pedro Pickering, Suzanne Signell, Adrian W Wilson, Harry Cliff, Penelope Ik, Mark Tan Kia Patel, Amita MacMahon, Eithne Cunningham, Emma Doores, Katie Agromayor, Monica Martin-Serrano, Juan Perucha, Esperanza Mischo, Hannah E. Shankar-Hari, Manu Batra, Rahul Edgeworth, Jonathan Zuckerman, Mark Malim, Michael H. Neil, Stuart Martinez-Nunez, Rocio Teresa |
author_sort | Lista, Maria Jose |
collection | PubMed |
description | There is a worldwide need for reagents to perform SARS-CoV-2 detection. Some laboratories have implemented kit-free protocols, but many others do not have the capacity to develop these and/or perform manual processing. We provide multiple workflows for SARS-CoV-2 nucleic acid detection in clinical samples by comparing several commercially available RNA extraction methods: QIAamp Viral RNA Mini Kit (QIAgen), RNAdvance Blood/Viral (Beckman) and Mag-Bind Viral DNA/RNA 96 Kit (Omega Bio-tek). We also compared One-step RT-qPCR reagents: TaqMan Fast Virus 1-Step Master Mix (FastVirus, ThermoFisher Scientific), qPCRBIO Probe 1-Step Go Lo-ROX (PCR Biosystems) and Luna(®) Universal Probe One-Step RT-qPCR Kit (Luna, NEB). We used primer-probes that detect viral N (EUA CDC) and RdRP (PHE guidelines). All RNA extraction methods provided similar results. FastVirus and Luna proved most sensitive. N detection was more reliable than that of RdRP, particularly in samples with low viral titres. Importantly, we demonstrate that treatment of nasopharyngeal swabs with 70 degrees for 10 or 30 min, or 90 degrees for 10 or 30 min (both original variant and B 1.1.7) inactivates SARS-CoV-2 employing plaque assays, and that it has minimal impact on the sensitivity of the qPCR in clinical samples. These findings make SARS-CoV-2 testing portable to settings that do not have CL-3 facilities. In summary, we provide several testing pipelines that can be easily implemented in other laboratories and have made all our protocols and SOPs freely available at https://osf.io/uebvj/. |
format | Online Article Text |
id | pubmed-8043481 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Cold Spring Harbor Laboratory |
record_format | MEDLINE/PubMed |
spelling | pubmed-80434812021-04-14 Resilient SARS-CoV-2 diagnostics workflows including viral heat inactivation Lista, Maria Jose Matos, Pedro M. Maguire, Thomas J. A. Poulton, Kate Ortiz-Zapater, Elena Page, Robert Sertkaya, Helin Ortega-Prieto, Ana M. O’Byrne, Aoife M. Bouton, Clement Dickenson, Ruth E Ficarelli, Mattia Jimenez-Guardeño, Jose M. Howard, Mark Betancor, Gilberto Galao, Rui Pedro Pickering, Suzanne Signell, Adrian W Wilson, Harry Cliff, Penelope Ik, Mark Tan Kia Patel, Amita MacMahon, Eithne Cunningham, Emma Doores, Katie Agromayor, Monica Martin-Serrano, Juan Perucha, Esperanza Mischo, Hannah E. Shankar-Hari, Manu Batra, Rahul Edgeworth, Jonathan Zuckerman, Mark Malim, Michael H. Neil, Stuart Martinez-Nunez, Rocio Teresa medRxiv Article There is a worldwide need for reagents to perform SARS-CoV-2 detection. Some laboratories have implemented kit-free protocols, but many others do not have the capacity to develop these and/or perform manual processing. We provide multiple workflows for SARS-CoV-2 nucleic acid detection in clinical samples by comparing several commercially available RNA extraction methods: QIAamp Viral RNA Mini Kit (QIAgen), RNAdvance Blood/Viral (Beckman) and Mag-Bind Viral DNA/RNA 96 Kit (Omega Bio-tek). We also compared One-step RT-qPCR reagents: TaqMan Fast Virus 1-Step Master Mix (FastVirus, ThermoFisher Scientific), qPCRBIO Probe 1-Step Go Lo-ROX (PCR Biosystems) and Luna(®) Universal Probe One-Step RT-qPCR Kit (Luna, NEB). We used primer-probes that detect viral N (EUA CDC) and RdRP (PHE guidelines). All RNA extraction methods provided similar results. FastVirus and Luna proved most sensitive. N detection was more reliable than that of RdRP, particularly in samples with low viral titres. Importantly, we demonstrate that treatment of nasopharyngeal swabs with 70 degrees for 10 or 30 min, or 90 degrees for 10 or 30 min (both original variant and B 1.1.7) inactivates SARS-CoV-2 employing plaque assays, and that it has minimal impact on the sensitivity of the qPCR in clinical samples. These findings make SARS-CoV-2 testing portable to settings that do not have CL-3 facilities. In summary, we provide several testing pipelines that can be easily implemented in other laboratories and have made all our protocols and SOPs freely available at https://osf.io/uebvj/. Cold Spring Harbor Laboratory 2021-04-10 /pmc/articles/PMC8043481/ /pubmed/33851184 http://dx.doi.org/10.1101/2020.04.22.20074351 Text en https://creativecommons.org/licenses/by/4.0/This work is licensed under a Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/) , which allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use. |
spellingShingle | Article Lista, Maria Jose Matos, Pedro M. Maguire, Thomas J. A. Poulton, Kate Ortiz-Zapater, Elena Page, Robert Sertkaya, Helin Ortega-Prieto, Ana M. O’Byrne, Aoife M. Bouton, Clement Dickenson, Ruth E Ficarelli, Mattia Jimenez-Guardeño, Jose M. Howard, Mark Betancor, Gilberto Galao, Rui Pedro Pickering, Suzanne Signell, Adrian W Wilson, Harry Cliff, Penelope Ik, Mark Tan Kia Patel, Amita MacMahon, Eithne Cunningham, Emma Doores, Katie Agromayor, Monica Martin-Serrano, Juan Perucha, Esperanza Mischo, Hannah E. Shankar-Hari, Manu Batra, Rahul Edgeworth, Jonathan Zuckerman, Mark Malim, Michael H. Neil, Stuart Martinez-Nunez, Rocio Teresa Resilient SARS-CoV-2 diagnostics workflows including viral heat inactivation |
title | Resilient SARS-CoV-2 diagnostics workflows including viral heat inactivation |
title_full | Resilient SARS-CoV-2 diagnostics workflows including viral heat inactivation |
title_fullStr | Resilient SARS-CoV-2 diagnostics workflows including viral heat inactivation |
title_full_unstemmed | Resilient SARS-CoV-2 diagnostics workflows including viral heat inactivation |
title_short | Resilient SARS-CoV-2 diagnostics workflows including viral heat inactivation |
title_sort | resilient sars-cov-2 diagnostics workflows including viral heat inactivation |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8043481/ https://www.ncbi.nlm.nih.gov/pubmed/33851184 http://dx.doi.org/10.1101/2020.04.22.20074351 |
work_keys_str_mv | AT listamariajose resilientsarscov2diagnosticsworkflowsincludingviralheatinactivation AT matospedrom resilientsarscov2diagnosticsworkflowsincludingviralheatinactivation AT maguirethomasja resilientsarscov2diagnosticsworkflowsincludingviralheatinactivation AT poultonkate resilientsarscov2diagnosticsworkflowsincludingviralheatinactivation AT ortizzapaterelena resilientsarscov2diagnosticsworkflowsincludingviralheatinactivation AT pagerobert resilientsarscov2diagnosticsworkflowsincludingviralheatinactivation AT sertkayahelin resilientsarscov2diagnosticsworkflowsincludingviralheatinactivation AT ortegaprietoanam resilientsarscov2diagnosticsworkflowsincludingviralheatinactivation AT obyrneaoifem resilientsarscov2diagnosticsworkflowsincludingviralheatinactivation AT boutonclement resilientsarscov2diagnosticsworkflowsincludingviralheatinactivation AT dickensonruthe resilientsarscov2diagnosticsworkflowsincludingviralheatinactivation AT ficarellimattia resilientsarscov2diagnosticsworkflowsincludingviralheatinactivation AT jimenezguardenojosem resilientsarscov2diagnosticsworkflowsincludingviralheatinactivation AT howardmark resilientsarscov2diagnosticsworkflowsincludingviralheatinactivation AT betancorgilberto resilientsarscov2diagnosticsworkflowsincludingviralheatinactivation AT galaoruipedro resilientsarscov2diagnosticsworkflowsincludingviralheatinactivation AT pickeringsuzanne resilientsarscov2diagnosticsworkflowsincludingviralheatinactivation AT signelladrianw resilientsarscov2diagnosticsworkflowsincludingviralheatinactivation AT wilsonharry resilientsarscov2diagnosticsworkflowsincludingviralheatinactivation AT cliffpenelope resilientsarscov2diagnosticsworkflowsincludingviralheatinactivation AT ikmarktankia resilientsarscov2diagnosticsworkflowsincludingviralheatinactivation AT patelamita resilientsarscov2diagnosticsworkflowsincludingviralheatinactivation AT macmahoneithne resilientsarscov2diagnosticsworkflowsincludingviralheatinactivation AT cunninghamemma resilientsarscov2diagnosticsworkflowsincludingviralheatinactivation AT dooreskatie resilientsarscov2diagnosticsworkflowsincludingviralheatinactivation AT agromayormonica resilientsarscov2diagnosticsworkflowsincludingviralheatinactivation AT martinserranojuan resilientsarscov2diagnosticsworkflowsincludingviralheatinactivation AT peruchaesperanza resilientsarscov2diagnosticsworkflowsincludingviralheatinactivation AT mischohannahe resilientsarscov2diagnosticsworkflowsincludingviralheatinactivation AT shankarharimanu resilientsarscov2diagnosticsworkflowsincludingviralheatinactivation AT batrarahul resilientsarscov2diagnosticsworkflowsincludingviralheatinactivation AT edgeworthjonathan resilientsarscov2diagnosticsworkflowsincludingviralheatinactivation AT zuckermanmark resilientsarscov2diagnosticsworkflowsincludingviralheatinactivation AT malimmichaelh resilientsarscov2diagnosticsworkflowsincludingviralheatinactivation AT neilstuart resilientsarscov2diagnosticsworkflowsincludingviralheatinactivation AT martineznunezrocioteresa resilientsarscov2diagnosticsworkflowsincludingviralheatinactivation |