Rheology-Informed Neural Networks (RhINNs) for forward and inverse metamodelling of complex fluids

Reliable and accurate prediction of complex fluids’ response under flow is of great interest across many disciplines, from biological systems to virtually all soft materials. The challenge is to solve non-trivial time and rate dependent constitutive equations to describe these structured fluids unde...

Descripción completa

Detalles Bibliográficos
Autores principales: Mahmoudabadbozchelou, Mohammadamin, Jamali, Safa
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8187644/
https://www.ncbi.nlm.nih.gov/pubmed/34103602
http://dx.doi.org/10.1038/s41598-021-91518-3