Cargando…
In Cellulo Mössbauer and EPR Studies Bring New Evidence to the Long‐Standing Debate on Iron–Sulfur Cluster Binding in Human Anamorsin
Human anamorsin is an iron–sulfur (Fe–S)‐cluster‐binding protein acting as an electron donor in the early steps of cytosolic iron–sulfur protein biogenesis. Human anamorsin belongs to the eukaryotic CIAPIN1 protein family and contains two highly conserved cysteine‐rich motifs, each binding an Fe–S c...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8251831/ https://www.ncbi.nlm.nih.gov/pubmed/33852169 http://dx.doi.org/10.1002/anie.202102910 |
Sumario: | Human anamorsin is an iron–sulfur (Fe–S)‐cluster‐binding protein acting as an electron donor in the early steps of cytosolic iron–sulfur protein biogenesis. Human anamorsin belongs to the eukaryotic CIAPIN1 protein family and contains two highly conserved cysteine‐rich motifs, each binding an Fe–S cluster. In vitro works by various groups have provided rather controversial results for the type of Fe–S clusters bound to the CIAPIN1 proteins. In order to unravel the knot on this topic, we used an in cellulo approach combining Mössbauer and EPR spectroscopies to characterize the iron–sulfur‐cluster‐bound form of human anamorsin. We found that the protein binds two [2Fe–2S] clusters at both its cysteine‐rich motifs. |
---|