Cargando…
Explainable Machine Learning Framework for Image Classification Problems: Case Study on Glioma Cancer Prediction
Image classification is a very popular machine learning domain in which deep convolutional neural networks have mainly emerged on such applications. These networks manage to achieve remarkable performance in terms of prediction accuracy but they are considered as black box models since they lack the...
Autores principales: | Pintelas, Emmanuel, Liaskos, Meletis, Livieris, Ioannis E., Kotsiantis, Sotiris, Pintelas, Panagiotis |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8321040/ https://www.ncbi.nlm.nih.gov/pubmed/34460583 http://dx.doi.org/10.3390/jimaging6060037 |
Ejemplares similares
-
Special Issue on Machine Learning and AI for Sensors
por: Pintelas, Panagiotis, et al.
Publicado: (2023) -
Explainable Image Similarity: Integrating Siamese Networks and Grad-CAM
por: Livieris, Ioannis E., et al.
Publicado: (2023) -
A Convolutional Autoencoder Topology for Classification in High-Dimensional Noisy Image Datasets
por: Pintelas, Emmanuel, et al.
Publicado: (2021) -
Investigating the Problem of Cryptocurrency Price Prediction: A Deep Learning Approach
por: Pintelas, Emmanuel, et al.
Publicado: (2020) -
Smoothing and stationarity enforcement framework for deep learning time-series forecasting
por: Livieris, Ioannis E., et al.
Publicado: (2021)