Cargando…
Machine learning and earthquake forecasting—next steps
A new generation of earthquake catalogs developed through supervised machine-learning illuminates earthquake activity with unprecedented detail. Application of unsupervised machine learning to analyze the more complete expression of seismicity in these catalogs may be the fastest route to improving...
Autores principales: | Beroza, Gregory C., Segou, Margarita, Mostafa Mousavi, S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8346575/ https://www.ncbi.nlm.nih.gov/pubmed/34362887 http://dx.doi.org/10.1038/s41467-021-24952-6 |
Ejemplares similares
-
On the Use of High‐Resolution and Deep‐Learning Seismic Catalogs for Short‐Term Earthquake Forecasts: Potential Benefits and Current Limitations
por: Mancini, S., et al.
Publicado: (2022) -
Laboratory earthquake forecasting: A machine learning competition
por: Johnson, Paul A., et al.
Publicado: (2021) -
Earthquake transformer—an attentive deep-learning model for simultaneous earthquake detection and phase picking
por: Mousavi, S. Mostafa, et al.
Publicado: (2020) -
CRED: A Deep Residual Network of Convolutional and Recurrent Units for Earthquake Signal Detection
por: Mousavi, S. Mostafa, et al.
Publicado: (2019) -
Next steps in the early detection of ovarian cancer
por: Bast, Robert C., et al.
Publicado: (2021)