Cargando…
Predicting Biomedical Interactions with Higher-Order Graph Convolutional Networks
Biomedical interaction networks have incredible potential to be useful in the prediction of biologically meaningful interactions, identification of network biomarkers of disease, and the discovery of putative drug targets. Recently, graph neural networks have been proposed to effectively learn repre...
Autores principales: | KC, Kishan, Li, Rui, Cui, Feng, Haake, Anne R. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8518029/ https://www.ncbi.nlm.nih.gov/pubmed/33587705 http://dx.doi.org/10.1109/TCBB.2021.3059415 |
Ejemplares similares
-
Graph embedding-based novel protein interaction prediction via higher-order graph convolutional network
por: Xiao, Ze, et al.
Publicado: (2020) -
Hybrid Low-Order and Higher-Order Graph Convolutional Networks
por: Lei, Fangyuan, et al.
Publicado: (2020) -
GNE: a deep learning framework for gene network inference by aggregating biological information
por: KC, Kishan, et al.
Publicado: (2019) -
Predicting compound-protein interaction using hierarchical graph convolutional networks
por: Bui-Thi, Danh, et al.
Publicado: (2022) -
Predicting anticancer hyperfoods with graph convolutional networks
por: Gonzalez, Guadalupe, et al.
Publicado: (2021)