Cargando…
A Candidate RNAi Screen Reveals Diverse RNA-Binding Protein Phenotypes in Drosophila Flight Muscle
The proper regulation of RNA processing is critical for muscle development and the fine-tuning of contractile ability among muscle fiber-types. RNA binding proteins (RBPs) regulate the diverse steps in RNA processing, including alternative splicing, which generates fiber-type specific isoforms of st...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8534295/ https://www.ncbi.nlm.nih.gov/pubmed/34685485 http://dx.doi.org/10.3390/cells10102505 |
_version_ | 1784587521283325952 |
---|---|
author | Kao, Shao-Yen Nikonova, Elena Chaabane, Sabrina Sabani, Albiona Martitz, Alexandra Wittner, Anja Heemken, Jakob Straub, Tobias Spletter, Maria L. |
author_facet | Kao, Shao-Yen Nikonova, Elena Chaabane, Sabrina Sabani, Albiona Martitz, Alexandra Wittner, Anja Heemken, Jakob Straub, Tobias Spletter, Maria L. |
author_sort | Kao, Shao-Yen |
collection | PubMed |
description | The proper regulation of RNA processing is critical for muscle development and the fine-tuning of contractile ability among muscle fiber-types. RNA binding proteins (RBPs) regulate the diverse steps in RNA processing, including alternative splicing, which generates fiber-type specific isoforms of structural proteins that confer contractile sarcomeres with distinct biomechanical properties. Alternative splicing is disrupted in muscle diseases such as myotonic dystrophy and dilated cardiomyopathy and is altered after intense exercise as well as with aging. It is therefore important to understand splicing and RBP function, but currently, only a small fraction of the hundreds of annotated RBPs expressed in muscle have been characterized. Here, we demonstrate the utility of Drosophila as a genetic model system to investigate basic developmental mechanisms of RBP function in myogenesis. We find that RBPs exhibit dynamic temporal and fiber-type specific expression patterns in mRNA-Seq data and display muscle-specific phenotypes. We performed knockdown with 105 RNAi hairpins targeting 35 RBPs and report associated lethality, flight, myofiber and sarcomere defects, including flight muscle phenotypes for Doa, Rm62, mub, mbl, sbr, and clu. Knockdown phenotypes of spliceosome components, as highlighted by phenotypes for A-complex components SF1 and Hrb87F (hnRNPA1), revealed level- and temporal-dependent myofibril defects. We further show that splicing mediated by SF1 and Hrb87F is necessary for Z-disc stability and proper myofibril development, and strong knockdown of either gene results in impaired localization of kettin to the Z-disc. Our results expand the number of RBPs with a described phenotype in muscle and underscore the diversity in myofibril and transcriptomic phenotypes associated with splicing defects. Drosophila is thus a powerful model to gain disease-relevant insight into cellular and molecular phenotypes observed when expression levels of splicing factors, spliceosome components and splicing dynamics are altered. |
format | Online Article Text |
id | pubmed-8534295 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-85342952021-10-23 A Candidate RNAi Screen Reveals Diverse RNA-Binding Protein Phenotypes in Drosophila Flight Muscle Kao, Shao-Yen Nikonova, Elena Chaabane, Sabrina Sabani, Albiona Martitz, Alexandra Wittner, Anja Heemken, Jakob Straub, Tobias Spletter, Maria L. Cells Article The proper regulation of RNA processing is critical for muscle development and the fine-tuning of contractile ability among muscle fiber-types. RNA binding proteins (RBPs) regulate the diverse steps in RNA processing, including alternative splicing, which generates fiber-type specific isoforms of structural proteins that confer contractile sarcomeres with distinct biomechanical properties. Alternative splicing is disrupted in muscle diseases such as myotonic dystrophy and dilated cardiomyopathy and is altered after intense exercise as well as with aging. It is therefore important to understand splicing and RBP function, but currently, only a small fraction of the hundreds of annotated RBPs expressed in muscle have been characterized. Here, we demonstrate the utility of Drosophila as a genetic model system to investigate basic developmental mechanisms of RBP function in myogenesis. We find that RBPs exhibit dynamic temporal and fiber-type specific expression patterns in mRNA-Seq data and display muscle-specific phenotypes. We performed knockdown with 105 RNAi hairpins targeting 35 RBPs and report associated lethality, flight, myofiber and sarcomere defects, including flight muscle phenotypes for Doa, Rm62, mub, mbl, sbr, and clu. Knockdown phenotypes of spliceosome components, as highlighted by phenotypes for A-complex components SF1 and Hrb87F (hnRNPA1), revealed level- and temporal-dependent myofibril defects. We further show that splicing mediated by SF1 and Hrb87F is necessary for Z-disc stability and proper myofibril development, and strong knockdown of either gene results in impaired localization of kettin to the Z-disc. Our results expand the number of RBPs with a described phenotype in muscle and underscore the diversity in myofibril and transcriptomic phenotypes associated with splicing defects. Drosophila is thus a powerful model to gain disease-relevant insight into cellular and molecular phenotypes observed when expression levels of splicing factors, spliceosome components and splicing dynamics are altered. MDPI 2021-09-22 /pmc/articles/PMC8534295/ /pubmed/34685485 http://dx.doi.org/10.3390/cells10102505 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Kao, Shao-Yen Nikonova, Elena Chaabane, Sabrina Sabani, Albiona Martitz, Alexandra Wittner, Anja Heemken, Jakob Straub, Tobias Spletter, Maria L. A Candidate RNAi Screen Reveals Diverse RNA-Binding Protein Phenotypes in Drosophila Flight Muscle |
title | A Candidate RNAi Screen Reveals Diverse RNA-Binding Protein Phenotypes in Drosophila Flight Muscle |
title_full | A Candidate RNAi Screen Reveals Diverse RNA-Binding Protein Phenotypes in Drosophila Flight Muscle |
title_fullStr | A Candidate RNAi Screen Reveals Diverse RNA-Binding Protein Phenotypes in Drosophila Flight Muscle |
title_full_unstemmed | A Candidate RNAi Screen Reveals Diverse RNA-Binding Protein Phenotypes in Drosophila Flight Muscle |
title_short | A Candidate RNAi Screen Reveals Diverse RNA-Binding Protein Phenotypes in Drosophila Flight Muscle |
title_sort | candidate rnai screen reveals diverse rna-binding protein phenotypes in drosophila flight muscle |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8534295/ https://www.ncbi.nlm.nih.gov/pubmed/34685485 http://dx.doi.org/10.3390/cells10102505 |
work_keys_str_mv | AT kaoshaoyen acandidaternaiscreenrevealsdiversernabindingproteinphenotypesindrosophilaflightmuscle AT nikonovaelena acandidaternaiscreenrevealsdiversernabindingproteinphenotypesindrosophilaflightmuscle AT chaabanesabrina acandidaternaiscreenrevealsdiversernabindingproteinphenotypesindrosophilaflightmuscle AT sabanialbiona acandidaternaiscreenrevealsdiversernabindingproteinphenotypesindrosophilaflightmuscle AT martitzalexandra acandidaternaiscreenrevealsdiversernabindingproteinphenotypesindrosophilaflightmuscle AT wittneranja acandidaternaiscreenrevealsdiversernabindingproteinphenotypesindrosophilaflightmuscle AT heemkenjakob acandidaternaiscreenrevealsdiversernabindingproteinphenotypesindrosophilaflightmuscle AT straubtobias acandidaternaiscreenrevealsdiversernabindingproteinphenotypesindrosophilaflightmuscle AT splettermarial acandidaternaiscreenrevealsdiversernabindingproteinphenotypesindrosophilaflightmuscle AT kaoshaoyen candidaternaiscreenrevealsdiversernabindingproteinphenotypesindrosophilaflightmuscle AT nikonovaelena candidaternaiscreenrevealsdiversernabindingproteinphenotypesindrosophilaflightmuscle AT chaabanesabrina candidaternaiscreenrevealsdiversernabindingproteinphenotypesindrosophilaflightmuscle AT sabanialbiona candidaternaiscreenrevealsdiversernabindingproteinphenotypesindrosophilaflightmuscle AT martitzalexandra candidaternaiscreenrevealsdiversernabindingproteinphenotypesindrosophilaflightmuscle AT wittneranja candidaternaiscreenrevealsdiversernabindingproteinphenotypesindrosophilaflightmuscle AT heemkenjakob candidaternaiscreenrevealsdiversernabindingproteinphenotypesindrosophilaflightmuscle AT straubtobias candidaternaiscreenrevealsdiversernabindingproteinphenotypesindrosophilaflightmuscle AT splettermarial candidaternaiscreenrevealsdiversernabindingproteinphenotypesindrosophilaflightmuscle |