Cargando…
Automatic Multichannel Electrocardiogram Record Classification Using XGBoost Fusion Model
There is an increasing demand for automatic classification of standard 12-lead electrocardiogram signals in the medical field. Considering that different channels and temporal segments of a feature map extracted from the 12-lead electrocardiogram record contribute differently to cardiac arrhythmia d...
Autores principales: | Ye, Xiaohong, Huang, Yuanqi, Lu, Qiang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9049587/ https://www.ncbi.nlm.nih.gov/pubmed/35492618 http://dx.doi.org/10.3389/fphys.2022.840011 |
Ejemplares similares
-
Identification of Drug-Induced Multichannel Block and Proarrhythmic Risk in Humans Using Continuous T Vector Velocity Effect Profiles Derived From Surface Electrocardiograms
por: Bystricky, Werner, et al.
Publicado: (2020) -
Prediction and Screening Model for Products Based on Fusion Regression and XGBoost Classification
por: Wu, Jiaju, et al.
Publicado: (2022) -
Classification of Fibrillation Organisation Using Electrocardiograms to Guide Mechanism-Directed Treatments
por: Li, Xinyang, et al.
Publicado: (2021) -
The impact of sport-specific physical fitness change patterns on lower limb non-contact injury risk in youth female basketball players: a pilot study based on field testing and machine learning
por: Huang, Yuanqi, et al.
Publicado: (2023) -
A filter approach for feature selection in classification: application to automatic atrial fibrillation detection in electrocardiogram recordings
por: Michel, Pierre, et al.
Publicado: (2021)