Clustering out‐of‐hospital cardiac arrest patients with non‐shockable rhythm by machine learning latent class analysis

AIM: We aimed to identify subphenotypes among patients with out‐of‐hospital cardiac arrest (OHCA) with initial non‐shockable rhythm by applying machine learning latent class analysis and examining the associations between subphenotypes and neurological outcomes. METHODS: This study was a retrospecti...

Descripción completa

Detalles Bibliográficos
Autores principales: Okada, Yohei, Komukai, Sho, Kitamura, Tetsuhisa, Kiguchi, Takeyuki, Irisawa, Taro, Yamada, Tomoki, Yoshiya, Kazuhisa, Park, Changhwi, Nishimura, Tetsuro, Ishibe, Takuya, Yagi, Yoshiki, Kishimoto, Masafumi, Inoue, Toshiya, Hayashi, Yasuyuki, Sogabe, Taku, Morooka, Takaya, Sakamoto, Haruko, Suzuki, Keitaro, Nakamura, Fumiko, Matsuyama, Tasuku, Nishioka, Norihiro, Kobayashi, Daisuke, Matsui, Satoshi, Hirayama, Atsushi, Yoshimura, Satoshi, Kimata, Shunsuke, Shimazu, Takeshi, Ohtsuru, Shigeru, Iwami, Taku
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9136939/
https://www.ncbi.nlm.nih.gov/pubmed/35664809
http://dx.doi.org/10.1002/ams2.760
_version_ 1784714284691881984
author Okada, Yohei
Komukai, Sho
Kitamura, Tetsuhisa
Kiguchi, Takeyuki
Irisawa, Taro
Yamada, Tomoki
Yoshiya, Kazuhisa
Park, Changhwi
Nishimura, Tetsuro
Ishibe, Takuya
Yagi, Yoshiki
Kishimoto, Masafumi
Inoue, Toshiya
Hayashi, Yasuyuki
Sogabe, Taku
Morooka, Takaya
Sakamoto, Haruko
Suzuki, Keitaro
Nakamura, Fumiko
Matsuyama, Tasuku
Nishioka, Norihiro
Kobayashi, Daisuke
Matsui, Satoshi
Hirayama, Atsushi
Yoshimura, Satoshi
Kimata, Shunsuke
Shimazu, Takeshi
Ohtsuru, Shigeru
Iwami, Taku
author_facet Okada, Yohei
Komukai, Sho
Kitamura, Tetsuhisa
Kiguchi, Takeyuki
Irisawa, Taro
Yamada, Tomoki
Yoshiya, Kazuhisa
Park, Changhwi
Nishimura, Tetsuro
Ishibe, Takuya
Yagi, Yoshiki
Kishimoto, Masafumi
Inoue, Toshiya
Hayashi, Yasuyuki
Sogabe, Taku
Morooka, Takaya
Sakamoto, Haruko
Suzuki, Keitaro
Nakamura, Fumiko
Matsuyama, Tasuku
Nishioka, Norihiro
Kobayashi, Daisuke
Matsui, Satoshi
Hirayama, Atsushi
Yoshimura, Satoshi
Kimata, Shunsuke
Shimazu, Takeshi
Ohtsuru, Shigeru
Iwami, Taku
author_sort Okada, Yohei
collection PubMed
description AIM: We aimed to identify subphenotypes among patients with out‐of‐hospital cardiac arrest (OHCA) with initial non‐shockable rhythm by applying machine learning latent class analysis and examining the associations between subphenotypes and neurological outcomes. METHODS: This study was a retrospective analysis within a multi‐institutional prospective observational cohort study of OHCA patients in Osaka, Japan (the CRITICAL study). The data of adult OHCA patients with medical causes and initial non‐shockable rhythm presenting with OHCA between 2012 and 2016 were included in machine learning latent class analysis models, which identified subphenotypes, and patients who presented in 2017 were included in a dataset validating the subphenotypes. We investigated associations between subphenotypes and 30‐day neurological outcomes. RESULTS: Among the 12,594 patients in the CRITICAL study database, 4,849 were included in the dataset used to classify subphenotypes (median age: 75 years, 60.2% male), and 1,465 were included in the validation dataset (median age: 76 years, 59.0% male). Latent class analysis identified four subphenotypes. Odds ratios and 95% confidence intervals for a favorable 30‐day neurological outcome among patients with these subphenotypes, using group 4 for comparison, were as follows; group 1, 0.01 (0.001–0.046); group 2, 0.097 (0.051–0.171); and group 3, 0.175 (0.073–0.358). Associations between subphenotypes and 30‐day neurological outcomes were validated using the validation dataset. CONCLUSION: We identified four subphenotypes of OHCA patients with initial non‐shockable rhythm. These patient subgroups presented with different characteristics associated with 30‐day survival and neurological outcomes.
format Online
Article
Text
id pubmed-9136939
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-91369392022-06-04 Clustering out‐of‐hospital cardiac arrest patients with non‐shockable rhythm by machine learning latent class analysis Okada, Yohei Komukai, Sho Kitamura, Tetsuhisa Kiguchi, Takeyuki Irisawa, Taro Yamada, Tomoki Yoshiya, Kazuhisa Park, Changhwi Nishimura, Tetsuro Ishibe, Takuya Yagi, Yoshiki Kishimoto, Masafumi Inoue, Toshiya Hayashi, Yasuyuki Sogabe, Taku Morooka, Takaya Sakamoto, Haruko Suzuki, Keitaro Nakamura, Fumiko Matsuyama, Tasuku Nishioka, Norihiro Kobayashi, Daisuke Matsui, Satoshi Hirayama, Atsushi Yoshimura, Satoshi Kimata, Shunsuke Shimazu, Takeshi Ohtsuru, Shigeru Iwami, Taku Acute Med Surg Original Articles AIM: We aimed to identify subphenotypes among patients with out‐of‐hospital cardiac arrest (OHCA) with initial non‐shockable rhythm by applying machine learning latent class analysis and examining the associations between subphenotypes and neurological outcomes. METHODS: This study was a retrospective analysis within a multi‐institutional prospective observational cohort study of OHCA patients in Osaka, Japan (the CRITICAL study). The data of adult OHCA patients with medical causes and initial non‐shockable rhythm presenting with OHCA between 2012 and 2016 were included in machine learning latent class analysis models, which identified subphenotypes, and patients who presented in 2017 were included in a dataset validating the subphenotypes. We investigated associations between subphenotypes and 30‐day neurological outcomes. RESULTS: Among the 12,594 patients in the CRITICAL study database, 4,849 were included in the dataset used to classify subphenotypes (median age: 75 years, 60.2% male), and 1,465 were included in the validation dataset (median age: 76 years, 59.0% male). Latent class analysis identified four subphenotypes. Odds ratios and 95% confidence intervals for a favorable 30‐day neurological outcome among patients with these subphenotypes, using group 4 for comparison, were as follows; group 1, 0.01 (0.001–0.046); group 2, 0.097 (0.051–0.171); and group 3, 0.175 (0.073–0.358). Associations between subphenotypes and 30‐day neurological outcomes were validated using the validation dataset. CONCLUSION: We identified four subphenotypes of OHCA patients with initial non‐shockable rhythm. These patient subgroups presented with different characteristics associated with 30‐day survival and neurological outcomes. John Wiley and Sons Inc. 2022-05-27 /pmc/articles/PMC9136939/ /pubmed/35664809 http://dx.doi.org/10.1002/ams2.760 Text en © 2022 The Authors. Acute Medicine & Surgery published by John Wiley & Sons Australia, Ltd on behalf of Japanese Association for Acute Medicine. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ (https://creativecommons.org/licenses/by-nc-nd/4.0/) License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.
spellingShingle Original Articles
Okada, Yohei
Komukai, Sho
Kitamura, Tetsuhisa
Kiguchi, Takeyuki
Irisawa, Taro
Yamada, Tomoki
Yoshiya, Kazuhisa
Park, Changhwi
Nishimura, Tetsuro
Ishibe, Takuya
Yagi, Yoshiki
Kishimoto, Masafumi
Inoue, Toshiya
Hayashi, Yasuyuki
Sogabe, Taku
Morooka, Takaya
Sakamoto, Haruko
Suzuki, Keitaro
Nakamura, Fumiko
Matsuyama, Tasuku
Nishioka, Norihiro
Kobayashi, Daisuke
Matsui, Satoshi
Hirayama, Atsushi
Yoshimura, Satoshi
Kimata, Shunsuke
Shimazu, Takeshi
Ohtsuru, Shigeru
Iwami, Taku
Clustering out‐of‐hospital cardiac arrest patients with non‐shockable rhythm by machine learning latent class analysis
title Clustering out‐of‐hospital cardiac arrest patients with non‐shockable rhythm by machine learning latent class analysis
title_full Clustering out‐of‐hospital cardiac arrest patients with non‐shockable rhythm by machine learning latent class analysis
title_fullStr Clustering out‐of‐hospital cardiac arrest patients with non‐shockable rhythm by machine learning latent class analysis
title_full_unstemmed Clustering out‐of‐hospital cardiac arrest patients with non‐shockable rhythm by machine learning latent class analysis
title_short Clustering out‐of‐hospital cardiac arrest patients with non‐shockable rhythm by machine learning latent class analysis
title_sort clustering out‐of‐hospital cardiac arrest patients with non‐shockable rhythm by machine learning latent class analysis
topic Original Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9136939/
https://www.ncbi.nlm.nih.gov/pubmed/35664809
http://dx.doi.org/10.1002/ams2.760
work_keys_str_mv AT okadayohei clusteringoutofhospitalcardiacarrestpatientswithnonshockablerhythmbymachinelearninglatentclassanalysis
AT komukaisho clusteringoutofhospitalcardiacarrestpatientswithnonshockablerhythmbymachinelearninglatentclassanalysis
AT kitamuratetsuhisa clusteringoutofhospitalcardiacarrestpatientswithnonshockablerhythmbymachinelearninglatentclassanalysis
AT kiguchitakeyuki clusteringoutofhospitalcardiacarrestpatientswithnonshockablerhythmbymachinelearninglatentclassanalysis
AT irisawataro clusteringoutofhospitalcardiacarrestpatientswithnonshockablerhythmbymachinelearninglatentclassanalysis
AT yamadatomoki clusteringoutofhospitalcardiacarrestpatientswithnonshockablerhythmbymachinelearninglatentclassanalysis
AT yoshiyakazuhisa clusteringoutofhospitalcardiacarrestpatientswithnonshockablerhythmbymachinelearninglatentclassanalysis
AT parkchanghwi clusteringoutofhospitalcardiacarrestpatientswithnonshockablerhythmbymachinelearninglatentclassanalysis
AT nishimuratetsuro clusteringoutofhospitalcardiacarrestpatientswithnonshockablerhythmbymachinelearninglatentclassanalysis
AT ishibetakuya clusteringoutofhospitalcardiacarrestpatientswithnonshockablerhythmbymachinelearninglatentclassanalysis
AT yagiyoshiki clusteringoutofhospitalcardiacarrestpatientswithnonshockablerhythmbymachinelearninglatentclassanalysis
AT kishimotomasafumi clusteringoutofhospitalcardiacarrestpatientswithnonshockablerhythmbymachinelearninglatentclassanalysis
AT inouetoshiya clusteringoutofhospitalcardiacarrestpatientswithnonshockablerhythmbymachinelearninglatentclassanalysis
AT hayashiyasuyuki clusteringoutofhospitalcardiacarrestpatientswithnonshockablerhythmbymachinelearninglatentclassanalysis
AT sogabetaku clusteringoutofhospitalcardiacarrestpatientswithnonshockablerhythmbymachinelearninglatentclassanalysis
AT morookatakaya clusteringoutofhospitalcardiacarrestpatientswithnonshockablerhythmbymachinelearninglatentclassanalysis
AT sakamotoharuko clusteringoutofhospitalcardiacarrestpatientswithnonshockablerhythmbymachinelearninglatentclassanalysis
AT suzukikeitaro clusteringoutofhospitalcardiacarrestpatientswithnonshockablerhythmbymachinelearninglatentclassanalysis
AT nakamurafumiko clusteringoutofhospitalcardiacarrestpatientswithnonshockablerhythmbymachinelearninglatentclassanalysis
AT matsuyamatasuku clusteringoutofhospitalcardiacarrestpatientswithnonshockablerhythmbymachinelearninglatentclassanalysis
AT nishiokanorihiro clusteringoutofhospitalcardiacarrestpatientswithnonshockablerhythmbymachinelearninglatentclassanalysis
AT kobayashidaisuke clusteringoutofhospitalcardiacarrestpatientswithnonshockablerhythmbymachinelearninglatentclassanalysis
AT matsuisatoshi clusteringoutofhospitalcardiacarrestpatientswithnonshockablerhythmbymachinelearninglatentclassanalysis
AT hirayamaatsushi clusteringoutofhospitalcardiacarrestpatientswithnonshockablerhythmbymachinelearninglatentclassanalysis
AT yoshimurasatoshi clusteringoutofhospitalcardiacarrestpatientswithnonshockablerhythmbymachinelearninglatentclassanalysis
AT kimatashunsuke clusteringoutofhospitalcardiacarrestpatientswithnonshockablerhythmbymachinelearninglatentclassanalysis
AT shimazutakeshi clusteringoutofhospitalcardiacarrestpatientswithnonshockablerhythmbymachinelearninglatentclassanalysis
AT ohtsurushigeru clusteringoutofhospitalcardiacarrestpatientswithnonshockablerhythmbymachinelearninglatentclassanalysis
AT iwamitaku clusteringoutofhospitalcardiacarrestpatientswithnonshockablerhythmbymachinelearninglatentclassanalysis
AT clusteringoutofhospitalcardiacarrestpatientswithnonshockablerhythmbymachinelearninglatentclassanalysis