Digital rheometer twins: Learning the hidden rheology of complex fluids through rheology-informed graph neural networks

Precise and reliable prediction of soft and structured materials’ behavior under flowing conditions is of great interest to academics and industrial researchers alike. The classical route to achieving this goal is to construct constitutive relations that, through simplifying assumptions, approximate...

Descripción completa

Detalles Bibliográficos
Autores principales: Mahmoudabadbozchelou, Mohammadamin, Kamani, Krutarth M., Rogers, Simon A., Jamali, Safa
Formato: Online Artículo Texto
Lenguaje:English
Publicado: National Academy of Sciences 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9171907/
https://www.ncbi.nlm.nih.gov/pubmed/35544690
http://dx.doi.org/10.1073/pnas.2202234119

Ejemplares similares