Cargando…
Digital rheometer twins: Learning the hidden rheology of complex fluids through rheology-informed graph neural networks
Precise and reliable prediction of soft and structured materials’ behavior under flowing conditions is of great interest to academics and industrial researchers alike. The classical route to achieving this goal is to construct constitutive relations that, through simplifying assumptions, approximate...
Autores principales: | Mahmoudabadbozchelou, Mohammadamin, Kamani, Krutarth M., Rogers, Simon A., Jamali, Safa |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9171907/ https://www.ncbi.nlm.nih.gov/pubmed/35544690 http://dx.doi.org/10.1073/pnas.2202234119 |
Ejemplares similares
-
Rheology-Informed Neural Networks (RhINNs) for forward and inverse metamodelling of complex fluids
por: Mahmoudabadbozchelou, Mohammadamin, et al.
Publicado: (2021) -
Rheological Characterization of Asphalt Fine Aggregate Matrix Using Dynamic Shear Rheometer
por: Gong, Xiangbing, et al.
Publicado: (2019) -
Effect of Various Dynamic Shear Rheometer Testing Methods on the Measured Rheological Properties of Bitumen
por: Sheidaei, Maya, et al.
Publicado: (2023) -
Effect of Thermal Oxygen Aging Mode on Rheological Properties and Compatibility of Lignin-Modified Asphalt Binder by Dynamic Shear Rheometer
por: Cai, Meng, et al.
Publicado: (2022) -
Life and death of colloidal bonds control the rate-dependent rheology of gels
por: Nabizadeh, Mohammad, et al.
Publicado: (2021)