Cargando…
A Transfer Learning Approach to Correct the Temporal Performance Drift of Clinical Prediction Models: Retrospective Cohort Study
BACKGROUND: Clinical prediction models suffer from performance drift as the patient population shifts over time. There is a great need for model updating approaches or modeling frameworks that can effectively use the old and new data. OBJECTIVE: Based on the paradigm of transfer learning, we aimed t...
Autores principales: | Zhang, Xiangzhou, Xue, Yunfei, Su, Xinyu, Chen, Shaoyong, Liu, Kang, Chen, Weiqi, Liu, Mei, Hu, Yong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9685506/ https://www.ncbi.nlm.nih.gov/pubmed/36350705 http://dx.doi.org/10.2196/38053 |
Ejemplares similares
-
Development and Validation of a Personalized Model With Transfer Learning for Acute Kidney Injury Risk Estimation Using Electronic Health Records
por: Liu, Kang, et al.
Publicado: (2022) -
Investigation of the influence of B(0) drift on the performance of the PLANET method and an algorithm for drift correction
por: Shcherbakova, Yulia, et al.
Publicado: (2019) -
Changing relative risk of clinical factors for hospital-acquired acute kidney injury across age groups: a retrospective cohort study
por: Wu, Lijuan, et al.
Publicado: (2020) -
Analysis of LHC Transfer Line Trajectory Drifts
por: Drøsdal, L, et al.
Publicado: (2013) -
Analysis of LHC transfer line trajectory drifts
por: Drosdal, L, et al.
Publicado: (2013)