Cargando…
Heavy Metal Detection in Fritillaria thunbergii Using Laser-Induced Breakdown Spectroscopy Coupled with Variable Selection Algorithm and Chemometrics
Environmental and health risks associated with heavy metal pollution are serious. Human health can be adversely affected by the smallest amount of heavy metals. Modeling spectrum requires the careful selection of variables. Hence, simple variables that have a low level of interference and a high deg...
Autores principales: | Kabir, Muhammad Hilal, Guindo, Mahamed Lamine, Chen, Rongqin, Luo, Xinmeng, Kong, Wenwen, Liu, Fei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10048262/ https://www.ncbi.nlm.nih.gov/pubmed/36981052 http://dx.doi.org/10.3390/foods12061125 |
Ejemplares similares
-
Deep Learning Combined with Hyperspectral Imaging Technology for Variety Discrimination of Fritillaria thunbergii
por: Kabir, Muhammad Hilal, et al.
Publicado: (2022) -
Fast Detection of Heavy Metal Content in Fritillaria thunbergii by Laser-Induced Breakdown Spectroscopy with PSO-BP and SSA-BP Analysis
por: Luo, Xinmeng, et al.
Publicado: (2023) -
Application of Laser-Induced Breakdown Spectroscopy and Chemometrics for the Quality Evaluation of Foods with Medicinal Properties: A Review
por: Kabir, Muhammad Hilal, et al.
Publicado: (2022) -
Rapid Test for Adulteration of Fritillaria Thunbergii in Fritillaria Cirrhosa by Laser-Induced Breakdown Spectroscopy
por: Wei, Kai, et al.
Publicado: (2023) -
Geographic Origin Discrimination of Millet Using Vis-NIR Spectroscopy Combined with Machine Learning Techniques
por: Kabir, Muhammad Hilal, et al.
Publicado: (2021)