Cargando…
Benchmarking machine learning approaches to predict radiation-induced toxicities in lung cancer patients
BACKGROUND AND PURPOSE: Radiation-induced toxicities are common adverse events in lung cancer (LC) patients undergoing radiotherapy (RT). An accurate prediction of these adverse events might facilitate an informed and shared decision-making process between patient and radiation oncologist with a cle...
Autores principales: | Núñez-Benjumea, Francisco J., González-García, Sara, Moreno-Conde, Alberto, Riquelme-Santos, José C., López-Guerra, José L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10213176/ https://www.ncbi.nlm.nih.gov/pubmed/37251617 http://dx.doi.org/10.1016/j.ctro.2023.100640 |
Ejemplares similares
-
Raman microspectroscopy and machine learning for use in identifying radiation-induced lung toxicity
por: Ali-Adeeb, Ramie N., et al.
Publicado: (2022) -
Desiderata for digital consent in genomic research
por: Parra-Calderón, Carlos Luis, et al.
Publicado: (2018) -
A benchmark dataset for machine learning in ecotoxicology
por: Schür, Christoph, et al.
Publicado: (2023) -
Machine Learning for Benchmarking Critical Care Outcomes
por: Atallah, Louis, et al.
Publicado: (2023) -
A Protein Classification Benchmark collection for machine learning
por: Sonego, Paolo, et al.
Publicado: (2007)