Cargando…
Applying Intelligent Computing Techniques to Modeling Biological Networks from Expression Data
Constructing biological networks is one of the most important issues in systems biology. However, constructing a network from data manually takes a considerable large amount of time, therefore an automated procedure is advocated. To automate the procedure of network construction, in this work we use...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5054112/ https://www.ncbi.nlm.nih.gov/pubmed/18973867 http://dx.doi.org/10.1016/S1672-0229(08)60026-1 |
Sumario: | Constructing biological networks is one of the most important issues in systems biology. However, constructing a network from data manually takes a considerable large amount of time, therefore an automated procedure is advocated. To automate the procedure of network construction, in this work we use two intelligent computing techniques, genetic programming and neural computation, to infer two kinds of network models that use continuous variables. To verify the presented approaches, experiments have been conducted and the preliminary results show that both approaches can be used to infer networks successfully. |
---|