Growth performance, nutrient digestibility, antioxidant capacity, blood biochemical biomarkers and cytokines expression in broiler chickens fed different phytogenic levels

The effects of inclusion levels of a phytogenic feed additive (PFA), characterized by menthol anethol and eugenol, on broiler growth performance, nutrient digestibility, biochemical biomarkers and total antioxidant capacity (TAC) of plasma and meat, as well as on the relative expression of selected...

Descripción completa

Detalles Bibliográficos
Autores principales: Paraskeuas, Vasileios, Fegeros, Konstantinos, Palamidi, Irida, Hunger, Christine, Mountzouris, Konstantinos C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: KeAi Publishing 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5941105/
https://www.ncbi.nlm.nih.gov/pubmed/29767099
http://dx.doi.org/10.1016/j.aninu.2017.01.005
Descripción
Sumario:The effects of inclusion levels of a phytogenic feed additive (PFA), characterized by menthol anethol and eugenol, on broiler growth performance, nutrient digestibility, biochemical biomarkers and total antioxidant capacity (TAC) of plasma and meat, as well as on the relative expression of selected cytokines, were studied in a 42-d experiment. A total of 225 one-day-old male Cobb broiler chickens were assigned into 3 treatments, with 5 replicates of 15 chickens each. Chickens were fed maize-soybean meal basal diets following a 3 phase (i.e., starter, grower and finisher) feeding program. Depending on PFA inclusion level, treatments were: no PFA (PFA-0), PFA at 100 mg/kg (PFA-100) and PFA at 150 mg/kg (PFA-150). Feed and water were available ad libitum. Feed conversion ratio (FCR) during finisher phase was improved quadratically (P < 0.05) with increasing PFA level. Overall, increasing PFA level increased body weight gain (BWG) in a linear (P < 0.05) and quadratic (P < 0.05) manner with treatments PFA-100 and PFA-150 being greater (P < 0.05) compared with PFA-0. Total tract apparent digestibility of dry matter increased linearly (P < 0.05) and quadratically (P < 0.05) with increasing PFA level. The apparent metabolizable energy corrected for nitrogen (AMEn) also increased linearly (P < 0.05). Increasing PFA level resulted in a linear (P < 0.05) increase in blood plasma TAC. Expression of pro-inflammatory cytokine interleukin -18 (IL-18) was reduced linearly (P < 0.05) in spleen with increasing PFA level. In conclusion, PFA inclusion at 100 mg/kg diet positively influenced performance, whereas PFA inclusion at 150 mg/kg resulted in a stronger improvement in AMEn and plasma TAC. Finally, PFA inclusion resulted in a pattern of reduced pro-inflammatory biomarker IL-18 at spleen. Overall, this study provides evidence for the beneficial role of PFA as a natural growth and health promoter in broiler chickens that needs to be further confirmed in field studies.