Cargando…

Genetic mapping of developmental trajectories for complex traits and diseases

Genome-wide association studies (GWAS) have identified numerous common genetic variants associated with complex human traits and diseases. However, the translation of GWAS discoveries into biological and clinical insights is highly challenging. In this study, we present a novel bioinformatics approa...

Descripción completa

Detalles Bibliográficos
Autores principales: Shulman, Eldad David, Elkon, Ran
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Research Network of Computational and Structural Biotechnology 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8220172/
https://www.ncbi.nlm.nih.gov/pubmed/34194671
http://dx.doi.org/10.1016/j.csbj.2021.05.055
_version_ 1783711091927285760
author Shulman, Eldad David
Elkon, Ran
author_facet Shulman, Eldad David
Elkon, Ran
author_sort Shulman, Eldad David
collection PubMed
description Genome-wide association studies (GWAS) have identified numerous common genetic variants associated with complex human traits and diseases. However, the translation of GWAS discoveries into biological and clinical insights is highly challenging. In this study, we present a novel bioinformatics approach for enhancing the functional interpretation of GWAS signals, based on their integration with single-cell (sc)RNA-seq datasets that examine developmental processes. Our approach performs three tasks: (1) Identification of links between cell differentiation trajectories and traits; (2) Elucidation of biological processes and molecular pathways that underlie such trajectory-trait links; and (3) Prioritization of target genes that carry the links between trajectories, pathways and traits. We applied our method to a set of 11 traits of various pathologies, and 12 scRNA-seq datasets of diverse developmental processes, and it readily detected well-established biological connections, including those between the maturation of cortical inhibitory interneurons and schizophrenia, hepatocytes and cholesterol levels, and pancreatic beta-islet cells and type-2 diabetes. For each of these associations, our method pinpointed top candidate genes that are strongly associated with both the kinetics of the differentiation trajectory and the disease’s genetic risk. By the identification of trajectory-disease links, molecular pathways that underlie them and prioritizing candidate risk genes, our method improves the understanding of the etiology of complex diseases, and thus holds promise for enhancing rational drug development that is aimed at targeting specific biological processes that mediate the genetic predisposition to diseases.
format Online
Article
Text
id pubmed-8220172
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Research Network of Computational and Structural Biotechnology
record_format MEDLINE/PubMed
spelling pubmed-82201722021-06-29 Genetic mapping of developmental trajectories for complex traits and diseases Shulman, Eldad David Elkon, Ran Comput Struct Biotechnol J Research Article Genome-wide association studies (GWAS) have identified numerous common genetic variants associated with complex human traits and diseases. However, the translation of GWAS discoveries into biological and clinical insights is highly challenging. In this study, we present a novel bioinformatics approach for enhancing the functional interpretation of GWAS signals, based on their integration with single-cell (sc)RNA-seq datasets that examine developmental processes. Our approach performs three tasks: (1) Identification of links between cell differentiation trajectories and traits; (2) Elucidation of biological processes and molecular pathways that underlie such trajectory-trait links; and (3) Prioritization of target genes that carry the links between trajectories, pathways and traits. We applied our method to a set of 11 traits of various pathologies, and 12 scRNA-seq datasets of diverse developmental processes, and it readily detected well-established biological connections, including those between the maturation of cortical inhibitory interneurons and schizophrenia, hepatocytes and cholesterol levels, and pancreatic beta-islet cells and type-2 diabetes. For each of these associations, our method pinpointed top candidate genes that are strongly associated with both the kinetics of the differentiation trajectory and the disease’s genetic risk. By the identification of trajectory-disease links, molecular pathways that underlie them and prioritizing candidate risk genes, our method improves the understanding of the etiology of complex diseases, and thus holds promise for enhancing rational drug development that is aimed at targeting specific biological processes that mediate the genetic predisposition to diseases. Research Network of Computational and Structural Biotechnology 2021-06-06 /pmc/articles/PMC8220172/ /pubmed/34194671 http://dx.doi.org/10.1016/j.csbj.2021.05.055 Text en © 2021 The Authors https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Research Article
Shulman, Eldad David
Elkon, Ran
Genetic mapping of developmental trajectories for complex traits and diseases
title Genetic mapping of developmental trajectories for complex traits and diseases
title_full Genetic mapping of developmental trajectories for complex traits and diseases
title_fullStr Genetic mapping of developmental trajectories for complex traits and diseases
title_full_unstemmed Genetic mapping of developmental trajectories for complex traits and diseases
title_short Genetic mapping of developmental trajectories for complex traits and diseases
title_sort genetic mapping of developmental trajectories for complex traits and diseases
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8220172/
https://www.ncbi.nlm.nih.gov/pubmed/34194671
http://dx.doi.org/10.1016/j.csbj.2021.05.055
work_keys_str_mv AT shulmaneldaddavid geneticmappingofdevelopmentaltrajectoriesforcomplextraitsanddiseases
AT elkonran geneticmappingofdevelopmentaltrajectoriesforcomplextraitsanddiseases