Cargando…
Properties and Applications of Nanoparticles from Plant Proteins
Nanoparticles from plant proteins are preferred over carbohydrates and synthetic polymeric-based materials for food, medical and other applications. In addition to their large availability and relatively low cost, plant proteins offer higher possibilities for surface modifications and functionalizin...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8269707/ https://www.ncbi.nlm.nih.gov/pubmed/34203348 http://dx.doi.org/10.3390/ma14133607 |
Sumario: | Nanoparticles from plant proteins are preferred over carbohydrates and synthetic polymeric-based materials for food, medical and other applications. In addition to their large availability and relatively low cost, plant proteins offer higher possibilities for surface modifications and functionalizing various biomolecules for specific applications. Plant proteins also avoid the immunogenic responses associated with the use of animal proteins. However, the sources of plant proteins are very diverse, and proteins from each source have distinct structures, properties and processing requirements. While proteins from corn (zein) and wheat (gliadin) are soluble in aqueous ethanol, most other plant proteins are insoluble in aqueous conditions. Apart from zein and gliadin nanoparticles (which are relatively easy to prepare), soy proteins, wheat glutenin and proteins from several legumes have been made into nanoparticles. The extraction of soluble proteins, hydrolyzing with alkali and acids, conjugation with other biopolymers, and newer techniques such as microfluidization and electrospraying have been adopted to develop plant protein nanoparticles. Solid, hollow, and core-shell nanoparticles with varying sizes and physical and chemical properties have been developed. Most plant protein nanoparticles have been used as carriers for drugs and as biomolecules for controlled release applications and for stabilizing food emulsions. This review provides an overview of the approaches used to prepare nanoparticles from plant proteins, and their properties and potential applications. The review’s specific focus is on the preparation methods and applications, rather than the properties of the proteins, which have been reported in detail in other publications. |
---|