Cargando…

Andrographolide and 4-Phenylbutyric Acid Administration Increase the Expression of Antimicrobial Peptides Beta-Defensin-1 and Cathelicidin and Reduce Mortality in Murine Sepsis

Antibiotic resistance is a global threat and requires the search for new treatment strategies. Natural antimicrobial peptides (AMPs) have pronounced antibacterial, antiviral, antifungal, and antitumor activity. AMPs’ clinical use is complicated by the high synthesis costs and rapid proteolytic degra...

Descripción completa

Detalles Bibliográficos
Autores principales: Bolatchiev, Albert, Baturin, Vladimir, Bolatchieva, Elizaveta
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9686524/
https://www.ncbi.nlm.nih.gov/pubmed/36421273
http://dx.doi.org/10.3390/antibiotics11111629
_version_ 1784835770697121792
author Bolatchiev, Albert
Baturin, Vladimir
Bolatchieva, Elizaveta
author_facet Bolatchiev, Albert
Baturin, Vladimir
Bolatchieva, Elizaveta
author_sort Bolatchiev, Albert
collection PubMed
description Antibiotic resistance is a global threat and requires the search for new treatment strategies. Natural antimicrobial peptides (AMPs) have pronounced antibacterial, antiviral, antifungal, and antitumor activity. AMPs’ clinical use is complicated by the high synthesis costs and rapid proteolytic degradation. The search for small molecules, inducers of endogenous AMP expression, could become a new approach. Here, we investigated for the first time the effect of seven small molecules (andrographolide, levofloxacin, azithromycin, montelukast, 4-phenylbutyric acid, rosuvastatin and valsartan) on AMP (beta-defensin-1, hBD-1 and cathelicidin, LL-37) serum levels in rats. In control groups, the level of hBD-1 was 295.0 (292.9–315.4) pg/mL, and for LL-37, it was 223.8 (213.3–233.6) pg/mL. Andrographolide (ANDR) and 4-phenylbutyric acid (4-PHBA) administration significantly enhanced the level of both AMPs. The hBD-1 level was 581.5 (476.3–607.7) pg/mL for ANDR and 436.9 (399.0–531.6) pg/mL for 4-PHBA. The LL-37 level was 415.4 (376.2–453.8) pg/mL for ANDR and 398.9 (355.7–410.1) pg/mL for 4-PHBA. Moreover, we have shown that these compounds reduce mortality in a murine model of sepsis caused by a carbapenem-resistant Klebsiella aerogenes isolate. From our point of view, these small molecules are promising candidates for further study as potent AMP inducers. The data obtained allow the development of new strategies to combat antibiotic resistance and infectious diseases.
format Online
Article
Text
id pubmed-9686524
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-96865242022-11-25 Andrographolide and 4-Phenylbutyric Acid Administration Increase the Expression of Antimicrobial Peptides Beta-Defensin-1 and Cathelicidin and Reduce Mortality in Murine Sepsis Bolatchiev, Albert Baturin, Vladimir Bolatchieva, Elizaveta Antibiotics (Basel) Article Antibiotic resistance is a global threat and requires the search for new treatment strategies. Natural antimicrobial peptides (AMPs) have pronounced antibacterial, antiviral, antifungal, and antitumor activity. AMPs’ clinical use is complicated by the high synthesis costs and rapid proteolytic degradation. The search for small molecules, inducers of endogenous AMP expression, could become a new approach. Here, we investigated for the first time the effect of seven small molecules (andrographolide, levofloxacin, azithromycin, montelukast, 4-phenylbutyric acid, rosuvastatin and valsartan) on AMP (beta-defensin-1, hBD-1 and cathelicidin, LL-37) serum levels in rats. In control groups, the level of hBD-1 was 295.0 (292.9–315.4) pg/mL, and for LL-37, it was 223.8 (213.3–233.6) pg/mL. Andrographolide (ANDR) and 4-phenylbutyric acid (4-PHBA) administration significantly enhanced the level of both AMPs. The hBD-1 level was 581.5 (476.3–607.7) pg/mL for ANDR and 436.9 (399.0–531.6) pg/mL for 4-PHBA. The LL-37 level was 415.4 (376.2–453.8) pg/mL for ANDR and 398.9 (355.7–410.1) pg/mL for 4-PHBA. Moreover, we have shown that these compounds reduce mortality in a murine model of sepsis caused by a carbapenem-resistant Klebsiella aerogenes isolate. From our point of view, these small molecules are promising candidates for further study as potent AMP inducers. The data obtained allow the development of new strategies to combat antibiotic resistance and infectious diseases. MDPI 2022-11-15 /pmc/articles/PMC9686524/ /pubmed/36421273 http://dx.doi.org/10.3390/antibiotics11111629 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Bolatchiev, Albert
Baturin, Vladimir
Bolatchieva, Elizaveta
Andrographolide and 4-Phenylbutyric Acid Administration Increase the Expression of Antimicrobial Peptides Beta-Defensin-1 and Cathelicidin and Reduce Mortality in Murine Sepsis
title Andrographolide and 4-Phenylbutyric Acid Administration Increase the Expression of Antimicrobial Peptides Beta-Defensin-1 and Cathelicidin and Reduce Mortality in Murine Sepsis
title_full Andrographolide and 4-Phenylbutyric Acid Administration Increase the Expression of Antimicrobial Peptides Beta-Defensin-1 and Cathelicidin and Reduce Mortality in Murine Sepsis
title_fullStr Andrographolide and 4-Phenylbutyric Acid Administration Increase the Expression of Antimicrobial Peptides Beta-Defensin-1 and Cathelicidin and Reduce Mortality in Murine Sepsis
title_full_unstemmed Andrographolide and 4-Phenylbutyric Acid Administration Increase the Expression of Antimicrobial Peptides Beta-Defensin-1 and Cathelicidin and Reduce Mortality in Murine Sepsis
title_short Andrographolide and 4-Phenylbutyric Acid Administration Increase the Expression of Antimicrobial Peptides Beta-Defensin-1 and Cathelicidin and Reduce Mortality in Murine Sepsis
title_sort andrographolide and 4-phenylbutyric acid administration increase the expression of antimicrobial peptides beta-defensin-1 and cathelicidin and reduce mortality in murine sepsis
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9686524/
https://www.ncbi.nlm.nih.gov/pubmed/36421273
http://dx.doi.org/10.3390/antibiotics11111629
work_keys_str_mv AT bolatchievalbert andrographolideand4phenylbutyricacidadministrationincreasetheexpressionofantimicrobialpeptidesbetadefensin1andcathelicidinandreducemortalityinmurinesepsis
AT baturinvladimir andrographolideand4phenylbutyricacidadministrationincreasetheexpressionofantimicrobialpeptidesbetadefensin1andcathelicidinandreducemortalityinmurinesepsis
AT bolatchievaelizaveta andrographolideand4phenylbutyricacidadministrationincreasetheexpressionofantimicrobialpeptidesbetadefensin1andcathelicidinandreducemortalityinmurinesepsis