Cargando…
Andrographolide and 4-Phenylbutyric Acid Administration Increase the Expression of Antimicrobial Peptides Beta-Defensin-1 and Cathelicidin and Reduce Mortality in Murine Sepsis
Antibiotic resistance is a global threat and requires the search for new treatment strategies. Natural antimicrobial peptides (AMPs) have pronounced antibacterial, antiviral, antifungal, and antitumor activity. AMPs’ clinical use is complicated by the high synthesis costs and rapid proteolytic degra...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9686524/ https://www.ncbi.nlm.nih.gov/pubmed/36421273 http://dx.doi.org/10.3390/antibiotics11111629 |
_version_ | 1784835770697121792 |
---|---|
author | Bolatchiev, Albert Baturin, Vladimir Bolatchieva, Elizaveta |
author_facet | Bolatchiev, Albert Baturin, Vladimir Bolatchieva, Elizaveta |
author_sort | Bolatchiev, Albert |
collection | PubMed |
description | Antibiotic resistance is a global threat and requires the search for new treatment strategies. Natural antimicrobial peptides (AMPs) have pronounced antibacterial, antiviral, antifungal, and antitumor activity. AMPs’ clinical use is complicated by the high synthesis costs and rapid proteolytic degradation. The search for small molecules, inducers of endogenous AMP expression, could become a new approach. Here, we investigated for the first time the effect of seven small molecules (andrographolide, levofloxacin, azithromycin, montelukast, 4-phenylbutyric acid, rosuvastatin and valsartan) on AMP (beta-defensin-1, hBD-1 and cathelicidin, LL-37) serum levels in rats. In control groups, the level of hBD-1 was 295.0 (292.9–315.4) pg/mL, and for LL-37, it was 223.8 (213.3–233.6) pg/mL. Andrographolide (ANDR) and 4-phenylbutyric acid (4-PHBA) administration significantly enhanced the level of both AMPs. The hBD-1 level was 581.5 (476.3–607.7) pg/mL for ANDR and 436.9 (399.0–531.6) pg/mL for 4-PHBA. The LL-37 level was 415.4 (376.2–453.8) pg/mL for ANDR and 398.9 (355.7–410.1) pg/mL for 4-PHBA. Moreover, we have shown that these compounds reduce mortality in a murine model of sepsis caused by a carbapenem-resistant Klebsiella aerogenes isolate. From our point of view, these small molecules are promising candidates for further study as potent AMP inducers. The data obtained allow the development of new strategies to combat antibiotic resistance and infectious diseases. |
format | Online Article Text |
id | pubmed-9686524 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-96865242022-11-25 Andrographolide and 4-Phenylbutyric Acid Administration Increase the Expression of Antimicrobial Peptides Beta-Defensin-1 and Cathelicidin and Reduce Mortality in Murine Sepsis Bolatchiev, Albert Baturin, Vladimir Bolatchieva, Elizaveta Antibiotics (Basel) Article Antibiotic resistance is a global threat and requires the search for new treatment strategies. Natural antimicrobial peptides (AMPs) have pronounced antibacterial, antiviral, antifungal, and antitumor activity. AMPs’ clinical use is complicated by the high synthesis costs and rapid proteolytic degradation. The search for small molecules, inducers of endogenous AMP expression, could become a new approach. Here, we investigated for the first time the effect of seven small molecules (andrographolide, levofloxacin, azithromycin, montelukast, 4-phenylbutyric acid, rosuvastatin and valsartan) on AMP (beta-defensin-1, hBD-1 and cathelicidin, LL-37) serum levels in rats. In control groups, the level of hBD-1 was 295.0 (292.9–315.4) pg/mL, and for LL-37, it was 223.8 (213.3–233.6) pg/mL. Andrographolide (ANDR) and 4-phenylbutyric acid (4-PHBA) administration significantly enhanced the level of both AMPs. The hBD-1 level was 581.5 (476.3–607.7) pg/mL for ANDR and 436.9 (399.0–531.6) pg/mL for 4-PHBA. The LL-37 level was 415.4 (376.2–453.8) pg/mL for ANDR and 398.9 (355.7–410.1) pg/mL for 4-PHBA. Moreover, we have shown that these compounds reduce mortality in a murine model of sepsis caused by a carbapenem-resistant Klebsiella aerogenes isolate. From our point of view, these small molecules are promising candidates for further study as potent AMP inducers. The data obtained allow the development of new strategies to combat antibiotic resistance and infectious diseases. MDPI 2022-11-15 /pmc/articles/PMC9686524/ /pubmed/36421273 http://dx.doi.org/10.3390/antibiotics11111629 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Bolatchiev, Albert Baturin, Vladimir Bolatchieva, Elizaveta Andrographolide and 4-Phenylbutyric Acid Administration Increase the Expression of Antimicrobial Peptides Beta-Defensin-1 and Cathelicidin and Reduce Mortality in Murine Sepsis |
title | Andrographolide and 4-Phenylbutyric Acid Administration Increase the Expression of Antimicrobial Peptides Beta-Defensin-1 and Cathelicidin and Reduce Mortality in Murine Sepsis |
title_full | Andrographolide and 4-Phenylbutyric Acid Administration Increase the Expression of Antimicrobial Peptides Beta-Defensin-1 and Cathelicidin and Reduce Mortality in Murine Sepsis |
title_fullStr | Andrographolide and 4-Phenylbutyric Acid Administration Increase the Expression of Antimicrobial Peptides Beta-Defensin-1 and Cathelicidin and Reduce Mortality in Murine Sepsis |
title_full_unstemmed | Andrographolide and 4-Phenylbutyric Acid Administration Increase the Expression of Antimicrobial Peptides Beta-Defensin-1 and Cathelicidin and Reduce Mortality in Murine Sepsis |
title_short | Andrographolide and 4-Phenylbutyric Acid Administration Increase the Expression of Antimicrobial Peptides Beta-Defensin-1 and Cathelicidin and Reduce Mortality in Murine Sepsis |
title_sort | andrographolide and 4-phenylbutyric acid administration increase the expression of antimicrobial peptides beta-defensin-1 and cathelicidin and reduce mortality in murine sepsis |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9686524/ https://www.ncbi.nlm.nih.gov/pubmed/36421273 http://dx.doi.org/10.3390/antibiotics11111629 |
work_keys_str_mv | AT bolatchievalbert andrographolideand4phenylbutyricacidadministrationincreasetheexpressionofantimicrobialpeptidesbetadefensin1andcathelicidinandreducemortalityinmurinesepsis AT baturinvladimir andrographolideand4phenylbutyricacidadministrationincreasetheexpressionofantimicrobialpeptidesbetadefensin1andcathelicidinandreducemortalityinmurinesepsis AT bolatchievaelizaveta andrographolideand4phenylbutyricacidadministrationincreasetheexpressionofantimicrobialpeptidesbetadefensin1andcathelicidinandreducemortalityinmurinesepsis |