Flavonol 7-O-Glucoside Herbacitrin Inhibits HIV-1 Replication through Simultaneous Integrase and Reverse Transcriptase Inhibition

Here we report the evaluation of the antiretroviral effect of two flavonoid 7-O-glucosides, herbacitrin (1) and gossypitrin (2), together with quercetin (3), a well-studied flavonol. Antiviral activity of the flavonoids was assessed by analyzing HIV-1 p24 core protein levels in the supernatants of H...

Descripción completa

Detalles Bibliográficos
Autores principales: Áy, Éva, Hunyadi, Attila, Mezei, Mária, Minárovits, János, Hohmann, Judit
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6378053/
https://www.ncbi.nlm.nih.gov/pubmed/30853999
http://dx.doi.org/10.1155/2019/1064793
Descripción
Sumario:Here we report the evaluation of the antiretroviral effect of two flavonoid 7-O-glucosides, herbacitrin (1) and gossypitrin (2), together with quercetin (3), a well-studied flavonol. Antiviral activity of the flavonoids was assessed by analyzing HIV-1 p24 core protein levels in the supernatants of HIV-1 infected MT-4 and MT-2 cell cultures. The compounds showed mild to weak cytotoxic activities on the host cells; herbacitrin was the strongest in this regard (CC(50)=27.8 and 63.64 μM on MT-4 and MT-2 cells, respectively). In nontoxic concentrations, herbacitrin and quercetin reduced HIV-1 replication, whereas gossypitrin was ineffective. Herbacitrin was found to inhibit reverse transcriptase at 21.5 μM, while it was a more potent integrase inhibitor already active at 2.15 μM. Therefore, our observations suggest that herbacitrin exerts antiretroviral activity through simultaneously acting on these two targets of HIV-1 and that integrase inhibition might play a major role in this activity.