Cargando…
The Application of Unsupervised Clustering Methods to Alzheimer’s Disease
Clustering is a powerful machine learning tool for detecting structures in datasets. In the medical field, clustering has been proven to be a powerful tool for discovering patterns and structure in labeled and unlabeled datasets. Unlike supervised methods, clustering is an unsupervised method that w...
Autores principales: | Alashwal, Hany, El Halaby, Mohamed, Crouse, Jacob J., Abdalla, Areeg, Moustafa, Ahmed A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6543980/ https://www.ncbi.nlm.nih.gov/pubmed/31178711 http://dx.doi.org/10.3389/fncom.2019.00031 |
Ejemplares similares
-
Molecular Docking and Dynamic Simulation of AZD3293 and Solanezumab Effects Against BACE1 to Treat Alzheimer's Disease
por: Hassan, Mubashir, et al.
Publicado: (2018) -
Applying Big Data Methods to Understanding Human Behavior and Health
por: Moustafa, Ahmed A., et al.
Publicado: (2018) -
Mechanistic insights into TNFR1/MADD death domains in Alzheimer’s disease through conformational molecular dynamic analysis
por: Hassan, Mubashir, et al.
Publicado: (2021) -
Neural Substrates of the Drift-Diffusion Model in Brain Disorders
por: Gupta, Ankur, et al.
Publicado: (2022) -
A commentary on: “A 12-year population-based study of freezing of gait in Parkinson's disease”
por: Crouse, Jacob J., et al.
Publicado: (2015)