Cargando…
Differential modulation of transendothelial electrical resistance by TRPV4 agonists is mediated by apoptosis and/or necrosis
Transient receptor potential vanilloid 4 (TRPV4) has been implicated in many disease conditions also in the lung. Its activation leads to an increase endothelial permeability in an intracellular calcium-influx dependent manner. We investigated its function in vitro on primary human endothelial cells...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6804647/ https://www.ncbi.nlm.nih.gov/pubmed/31650038 http://dx.doi.org/10.1016/j.bbrep.2019.100672 |
Sumario: | Transient receptor potential vanilloid 4 (TRPV4) has been implicated in many disease conditions also in the lung. Its activation leads to an increase endothelial permeability in an intracellular calcium-influx dependent manner. We investigated its function in vitro on primary human endothelial cells using two TRPV4 agonists, GSK1016790A and 4α-Phorbol 12,13-didecanoate (4α-PDD) and a selective TRPV4 blocker GSK2193874. Both TRPV4 agonists leaded to a reduction in transendothelial electrical resistance (TER) which was mediated however by differential cytotoxic effects. 4α-PDD induced apoptosis that could not be blocked by TRPV4 inhibition in HUVECs, whereas GSK1016790A selectively activated TRPV4 and reduced TER as a consequence of cellular necrosis. TRPV4 mediated cytotoxicity is poorly described and may provide significant context to the role of TRPV4 in barrier-function. |
---|