Cargando…
Computational pipeline for designing guide RNAs for mismatch-CRISPRi
CRISPR interference is an increasingly popular method for perturbing gene expression. Guided by single-guide RNAs (sgRNAs), nuclease-deficient Cas9 proteins bind to specific DNA sequences and hinder transcription. Specificity is achieved through complementarity of the sgRNAs to the DNA. Changing com...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8121773/ https://www.ncbi.nlm.nih.gov/pubmed/34027480 http://dx.doi.org/10.1016/j.xpro.2021.100521 |
Sumario: | CRISPR interference is an increasingly popular method for perturbing gene expression. Guided by single-guide RNAs (sgRNAs), nuclease-deficient Cas9 proteins bind to specific DNA sequences and hinder transcription. Specificity is achieved through complementarity of the sgRNAs to the DNA. Changing complementarity by introducing single-nucleotide mismatches can be exploited to tune knockdown. Here, we present a computational pipeline to identify sgRNAs targeting specific genes in a bacterial genome, filter them, and titrate their activity by introducing mismatches. For complete details on the use and execution of this protocol, please refer to Hawkins et al. (2020). |
---|