Cargando…
MapCell: Learning a Comparative Cell Type Distance Metric With Siamese Neural Nets With Applications Toward Cell-Type Identification Across Experimental Datasets
Large collections of annotated single-cell RNA sequencing (scRNA-seq) experiments are being generated across different organs, conditions and organisms on different platforms. The diversity, volume and complexity of this aggregated data requires new analysis techniques to extract actionable knowledg...
Autores principales: | Koh, Winston, Hoon, Shawn |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8593221/ https://www.ncbi.nlm.nih.gov/pubmed/34796179 http://dx.doi.org/10.3389/fcell.2021.767897 |
Ejemplares similares
-
Quantification of cell migration: metrics selection to model application
por: Hu, Yang, et al.
Publicado: (2023) -
Why isn’t each cell its own cell type? Diminishing returns of increasing cell type diversity can explain cell type allometry
por: Semrau, Stefan
Publicado: (2022) -
Using Cell Type–Specific Genes to Identify Cell-Type Transitions Between Different in vitro Culture Conditions
por: He, Xuelin, et al.
Publicado: (2021) -
Stem cell treatment for type 1 diabetes
por: Li, Ming, et al.
Publicado: (2014) -
Autosis as a selective type of cell death
por: Bai, Lingge, et al.
Publicado: (2023)