Cargando…
Distributional anchor regression
Prediction models often fail if train and test data do not stem from the same distribution. Out-of-distribution (OOD) generalization to unseen, perturbed test data is a desirable but difficult-to-achieve property for prediction models and in general requires strong assumptions on the data generating...
Autores principales: | Kook, Lucas, Sick, Beate, Bühlmann, Peter |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9106647/ https://www.ncbi.nlm.nih.gov/pubmed/35582000 http://dx.doi.org/10.1007/s11222-022-10097-z |
Ejemplares similares
-
Distributional regression modeling via generalized additive models for location, scale, and shape: An overview through a data set from learning analytics
por: Marmolejo‐Ramos, Fernando, et al.
Publicado: (2022) -
Probabilistic Deep Learning
por: Sick, Beate, et al.
Publicado: (2020) -
RACE: Remote Analysis Computation for gene Expression data
por: Psarros, Michael, et al.
Publicado: (2005) -
On the Regression Model for Generalized Normal Distributions
por: Alzaatreh, Ayman, et al.
Publicado: (2021) -
Understanding regression analysis: a conditional distribution approach
por: Westfall, Peter H, et al.
Publicado: (2020)