Cargando…
Deep learning for detecting visually impaired cataracts using fundus images
Purpose: To develop a visual function-based deep learning system (DLS) using fundus images to screen for visually impaired cataracts. Materials and methods: A total of 8,395 fundus images (5,245 subjects) with corresponding visual function parameters collected from three clinical centers were used t...
Autores principales: | Xie, He, Li, Zhongwen, Wu, Chengchao, Zhao, Yitian, Lin, Chengmin, Wang, Zhouqian, Wang, Chenxi, Gu, Qinyi, Wang, Minye, Zheng, Qinxiang, Jiang, Jiewei, Chen, Wei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10416247/ https://www.ncbi.nlm.nih.gov/pubmed/37576595 http://dx.doi.org/10.3389/fcell.2023.1197239 |
Ejemplares similares
-
Joint conditional generative adversarial networks for eyelash artifact removal in ultra-wide-field fundus images
por: Zhang, Jiong, et al.
Publicado: (2023) -
Deep Learning-Based Estimation of Axial Length and Subfoveal Choroidal Thickness From Color Fundus Photographs
por: Dong, Li, et al.
Publicado: (2021) -
An Optical Coherence Tomography-Based Deep Learning Algorithm for Visual Acuity Prediction of Highly Myopic Eyes After Cataract Surgery
por: Wei, Ling, et al.
Publicado: (2021) -
Deep-Learning-Based Hemoglobin Concentration Prediction and Anemia Screening Using Ultra-Wide Field Fundus Images
por: Zhao, Xinyu, et al.
Publicado: (2022) -
A prospective marker for the prediction of postoperative deep venous thrombosis: Neutrophil extracellular traps
por: Li, Yin, et al.
Publicado: (2022)