Effect of Channel Shape on Performance of Printed Indium Gallium Zinc Oxide Thin-Film Transistors

Printing technology will improve the complexity and material waste of traditional deposition and lithography processes in device fabrication. In particular, the printing process can effectively control the functional layer stacking and channel shape in thin-film transistor (TFT) devices. We prepared...

Descripción completa

Detalles Bibliográficos
Autores principales: Yan, Xingzhen, Li, Bo, Zhang, Yiqiang, Wang, Yanjie, Wang, Chao, Chi, Yaodan, Yang, Xiaotian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10673561/
https://www.ncbi.nlm.nih.gov/pubmed/38004978
http://dx.doi.org/10.3390/mi14112121
Descripción
Sumario:Printing technology will improve the complexity and material waste of traditional deposition and lithography processes in device fabrication. In particular, the printing process can effectively control the functional layer stacking and channel shape in thin-film transistor (TFT) devices. We prepared the patterning indium gallium zinc oxide (IGZO) semiconductor layer with Ga, In, and Zn molar ratios of 1:2:7 on Si/SiO(2) substrates. And the patterning source and drain electrodes were printed on the surface of semiconductor layers to construct a TFT device with the top contact and bottom gate structures. To overcome the problem of uniform distribution of applied voltages between electrode centers and edges, we investigated whether the circular arc channel could improve the carrier regulation ability under the field effect in printed TFTs compared with a traditional structure of rectangular symmetry and a rectangular groove channel. The drain current value of the IGZO TFT with a circular arc channel pattern was significantly enhanced compared to that of a TFT with rectangular symmetric source/drain electrodes under the corresponding drain–source voltage and gate voltage. The field effect properties of the device were obviously improved by introducing the arc-shaped channel structure.